Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

How many grams of [tex]Fe_2O_3[/tex] can form from [tex]26.7 \, \text{g}[/tex] of [tex]O_2[/tex]?

[tex]4 \, Fe(s) + 3 \, O_2(g) \longrightarrow 2 \, Fe_2O_3(s)[/tex]


Sagot :

Certainly! Let's go through the problem step by step.

Step 1: Understand the given data and balanced chemical equation

The balanced chemical equation is:
[tex]\[ 4 \text{Fe (s)} + 3 \text{O}_2 \text{(g)} \rightarrow 2 \text{Fe}_2\text{O}_3 \text{(s)} \][/tex]

Step 2: Determine the molar masses

From the periodic table:
- The molar mass of [tex]\( \text{O}_2 \)[/tex] is approximately [tex]\( 32.00 \, \text{g/mol} \)[/tex].
- The molar mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] is approximately [tex]\( 159.69 \, \text{g/mol} \)[/tex].

Step 3: Calculate the number of moles of [tex]\( \text{O}_2 \)[/tex]

Using the formula to convert grams to moles:
[tex]\[ \text{moles of } \text{O}_2 = \frac{\text{mass of } \text{O}_2}{\text{molar mass of } \text{O}_2} \][/tex]
[tex]\[ \text{moles of } \text{O}_2 = \frac{26.7 \, \text{g}}{32.00 \, \text{g/mol}} = 0.834375 \, \text{moles} \][/tex]

Step 4: Use stoichiometry to find the moles of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex]

From the balanced chemical equation, we know that 3 moles of [tex]\( \text{O}_2 \)[/tex] produce 2 moles of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex]. So, we can set up the following ratio:
[tex]\[ \frac{2 \, \text{moles of } \text{Fe}_2\text{O}_3}{3 \, \text{moles of } \text{O}_2} \][/tex]

Now, we use this ratio to find out how many moles of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] are formed from the 0.834375 moles of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{moles of } \text{Fe}_2\text{O}_3 = 0.834375 \, \text{moles of } \text{O}_2 \times \frac{2 \, \text{moles of } \text{Fe}_2\text{O}_3}{3 \, \text{moles of } \text{O}_2} \][/tex]
[tex]\[ \text{moles of } \text{Fe}_2\text{O}_3 = 0.55625 \, \text{moles} \][/tex]

Step 5: Convert moles of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] to mass

Using the molar mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex]:
[tex]\[ \text{mass of } \text{Fe}_2\text{O}_3 = \text{moles of } \text{Fe}_2\text{O}_3 \times \text{molar mass of } \text{Fe}_2\text{O}_3 \][/tex]
[tex]\[ \text{mass of } \text{Fe}_2\text{O}_3 = 0.55625 \, \text{moles} \times 159.69 \, \text{g/mol} \][/tex]
[tex]\[ \text{mass of } \text{Fe}_2\text{O}_3 = 88.8275625 \, \text{g} \][/tex]

Final Answer: The mass of [tex]\( \text{Fe}_2\text{O}_3 \)[/tex] that can form from 26.7 grams of [tex]\( \text{O}_2 \)[/tex] is approximately 88.83 grams.