Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the empirical formulas for ionic compounds formed by the given ions, we must ensure the total charge of each compound is neutral. The ions provided are:
- Bromate ion: [tex]\( BrO_3^- \)[/tex] with a charge of [tex]\(-1\)[/tex]
- Phosphate ion: [tex]\( PO_4^{3-} \)[/tex] with a charge of [tex]\(-3\)[/tex]
- Iron(III) ion: [tex]\( Fe^{3+} \)[/tex] with a charge of [tex]\(+3\)[/tex]
- Ammonium ion: [tex]\( NH_4^+ \)[/tex] with a charge of [tex]\(+1\)[/tex]
Let's go step-by-step through the possible combinations to achieve neutral compounds:
1. Combination of [tex]\(Fe^{3+}\)[/tex] and [tex]\(BrO_3^-\)[/tex]:
To balance the charges, we need three [tex]\(BrO_3^-\)[/tex] ions to neutralize one [tex]\(Fe^{3+}\)[/tex] ion. This results in:
[tex]\[ Fe(BrO_3)_3 \][/tex]
Here, the total charge is [tex]\(3 \times -1 + 3 = 0\)[/tex], making [tex]\(Fe(BrO_3)_3\)[/tex] an electrically neutral compound.
2. Combination of [tex]\(Fe^{3+}\)[/tex] and [tex]\(PO_4^{3-}\)[/tex]:
In this case, one [tex]\(Fe^{3+}\)[/tex] ion can neutralize one [tex]\(PO_4^{3-}\)[/tex] ion directly. Thus, the compound formed is:
[tex]\[ FePO_4 \][/tex]
The total charge is [tex]\(-3 + 3 = 0\)[/tex], ensuring [tex]\(FePO_4\)[/tex] is neutral.
3. Combination of [tex]\(NH_4^+\)[/tex] and [tex]\(PO_4^{3-}\)[/tex]:
To balance the charges, we need three [tex]\(NH_4^+\)[/tex] ions to neutralize one [tex]\(PO_4^{3-}\)[/tex] ion. This results in:
[tex]\[ (NH_4)_3PO_4 \][/tex]
Here, the total charge is [tex]\(3 \times +1 + (-3) = 0\)[/tex], making [tex]\((NH_4)_3PO_4\)[/tex] neutral.
4. Combination of [tex]\(NH_4^+\)[/tex] and [tex]\(BrO_3^-\)[/tex]:
Here, one [tex]\(NH_4^+\)[/tex] ion can balance one [tex]\(BrO_3^-\)[/tex] ion directly. Therefore, the compound formed is:
[tex]\[ NH_4BrO_3 \][/tex]
The total charge is [tex]\(+1 + (-1) = 0\)[/tex], making [tex]\(NH_4BrO_3\)[/tex] neutral.
Thus, the empirical formulas for the ionic compounds that can be formed from the given ions are:
1. [tex]\( Fe(BrO_3)_3 \)[/tex] (Iron(III) Bromate)
2. [tex]\( FePO_4 \)[/tex] (Iron(III) Phosphate)
3. [tex]\( (NH_4)_3PO_4 \)[/tex] (Ammonium Phosphate)
4. [tex]\( NH_4BrO_3 \)[/tex] (Ammonium Bromate)
- Bromate ion: [tex]\( BrO_3^- \)[/tex] with a charge of [tex]\(-1\)[/tex]
- Phosphate ion: [tex]\( PO_4^{3-} \)[/tex] with a charge of [tex]\(-3\)[/tex]
- Iron(III) ion: [tex]\( Fe^{3+} \)[/tex] with a charge of [tex]\(+3\)[/tex]
- Ammonium ion: [tex]\( NH_4^+ \)[/tex] with a charge of [tex]\(+1\)[/tex]
Let's go step-by-step through the possible combinations to achieve neutral compounds:
1. Combination of [tex]\(Fe^{3+}\)[/tex] and [tex]\(BrO_3^-\)[/tex]:
To balance the charges, we need three [tex]\(BrO_3^-\)[/tex] ions to neutralize one [tex]\(Fe^{3+}\)[/tex] ion. This results in:
[tex]\[ Fe(BrO_3)_3 \][/tex]
Here, the total charge is [tex]\(3 \times -1 + 3 = 0\)[/tex], making [tex]\(Fe(BrO_3)_3\)[/tex] an electrically neutral compound.
2. Combination of [tex]\(Fe^{3+}\)[/tex] and [tex]\(PO_4^{3-}\)[/tex]:
In this case, one [tex]\(Fe^{3+}\)[/tex] ion can neutralize one [tex]\(PO_4^{3-}\)[/tex] ion directly. Thus, the compound formed is:
[tex]\[ FePO_4 \][/tex]
The total charge is [tex]\(-3 + 3 = 0\)[/tex], ensuring [tex]\(FePO_4\)[/tex] is neutral.
3. Combination of [tex]\(NH_4^+\)[/tex] and [tex]\(PO_4^{3-}\)[/tex]:
To balance the charges, we need three [tex]\(NH_4^+\)[/tex] ions to neutralize one [tex]\(PO_4^{3-}\)[/tex] ion. This results in:
[tex]\[ (NH_4)_3PO_4 \][/tex]
Here, the total charge is [tex]\(3 \times +1 + (-3) = 0\)[/tex], making [tex]\((NH_4)_3PO_4\)[/tex] neutral.
4. Combination of [tex]\(NH_4^+\)[/tex] and [tex]\(BrO_3^-\)[/tex]:
Here, one [tex]\(NH_4^+\)[/tex] ion can balance one [tex]\(BrO_3^-\)[/tex] ion directly. Therefore, the compound formed is:
[tex]\[ NH_4BrO_3 \][/tex]
The total charge is [tex]\(+1 + (-1) = 0\)[/tex], making [tex]\(NH_4BrO_3\)[/tex] neutral.
Thus, the empirical formulas for the ionic compounds that can be formed from the given ions are:
1. [tex]\( Fe(BrO_3)_3 \)[/tex] (Iron(III) Bromate)
2. [tex]\( FePO_4 \)[/tex] (Iron(III) Phosphate)
3. [tex]\( (NH_4)_3PO_4 \)[/tex] (Ammonium Phosphate)
4. [tex]\( NH_4BrO_3 \)[/tex] (Ammonium Bromate)
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.