Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

If [tex]u(x) = -2x^2 + 3[/tex] and [tex]v(x) = \frac{1}{x}[/tex], what is the range of [tex](u \circ v)(x)[/tex]?

A. [tex]\left(\frac{1}{3}, 0\right)[/tex]

B. [tex](3, \infty)[/tex]

C. [tex](-\infty, 3)[/tex]

D. [tex](-\infty, +\infty)[/tex]


Sagot :

To determine the range of [tex]\((u \circ v)(x)\)[/tex], we first need to find the composition of the two functions [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex].

Given:
[tex]\[ u(x) = -2x^2 + 3 \][/tex]
[tex]\[ v(x) = \frac{1}{x} \][/tex]

The composition [tex]\((u \circ v)(x)\)[/tex] means we substitute [tex]\(v(x)\)[/tex] into [tex]\(u(x)\)[/tex]:
[tex]\[ (u \circ v)(x) = u(v(x)) = u\left(\frac{1}{x}\right) \][/tex]

So, we substitute [tex]\(\frac{1}{x}\)[/tex] into [tex]\(u(x)\)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x}\right)^2 + 3 \][/tex]
[tex]\[ = -2\left(\frac{1}{x^2}\right) + 3 \][/tex]
[tex]\[ = -\frac{2}{x^2} + 3 \][/tex]

Now we need to determine the range of the function [tex]\( -\frac{2}{x^2} + 3 \)[/tex]. To do this, we analyze the expression:

1. Analyze [tex]\(-\frac{2}{x^2}\)[/tex]:
- The function [tex]\(x^2\)[/tex] is always positive except when [tex]\(x = 0\)[/tex], where it is undefined.
- Thus, [tex]\(\frac{1}{x^2}\)[/tex] is also always positive for all [tex]\(x \neq 0\)[/tex].
- Since [tex]\(\frac{1}{x^2} > 0\)[/tex], [tex]\(-\frac{2}{x^2} < 0\)[/tex].

2. Analyze the whole expression [tex]\(-\frac{2}{x^2} + 3\)[/tex]:
- Because [tex]\(\frac{2}{x^2}\)[/tex] is always positive, [tex]\(-\frac{2}{x^2}\)[/tex] is always negative.
- Therefore, [tex]\(-\frac{2}{x^2} + 3\)[/tex] will always be less than 3 (since we are subtracting a positive quantity from 3).
- As [tex]\(x\)[/tex] approaches [tex]\(\pm\infty\)[/tex], [tex]\(\frac{1}{x^2}\)[/tex] approaches 0 and [tex]\(-\frac{2}{x^2}\)[/tex] approaches 0. Therefore, [tex]\(-\frac{2}{x^2} + 3\)[/tex] will approach 3 but never actually reach 3.
- As [tex]\(x\)[/tex] approaches 0 (from either the positive or negative direction), [tex]\(\frac{1}{x^2}\)[/tex] approaches [tex]\(\infty\)[/tex] and [tex]\(-\frac{2}{x^2}\)[/tex] approaches [tex]\(-\infty\)[/tex], making [tex]\(-\frac{2}{x^2} + 3\)[/tex] become very negative.

Hence, the value of [tex]\(-\frac{2}{x^2} + 3\)[/tex] can be any real number less than 3.

Therefore, the range of the composite function [tex]\((u \circ v)(x)\)[/tex] is:
[tex]\[ (-\infty, 3) \][/tex]

Thus, the correct answer is:
[tex]\[ (-\infty, 3) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.