Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find a vector of magnitude [tex]\( S \)[/tex] unit that is perpendicular to both [tex]\(\vec{a} = -2\hat{i} + \hat{j} + \hat{k}\)[/tex] and [tex]\(\vec{b} = \hat{i} - 3\hat{j} - \hat{k}\)[/tex], we need to follow these steps:
1. Compute the Cross Product:
The cross product of two vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] gives us a vector that is perpendicular to both.
Given:
[tex]\[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \][/tex]
[tex]\[ \vec{b} = \hat{i} - 3\hat{j} - \hat{k} \][/tex]
The cross product [tex]\(\vec{a} \times \vec{b}\)[/tex] is determined by:
[tex]\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -3 & -1 \end{vmatrix} \][/tex]
Expanding this determinant, we find:
[tex]\[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} \][/tex]
Calculate each of the smaller [tex]\(2 \times 2\)[/tex] determinants:
[tex]\[ \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} = (1 \times -1) - (1 \times -3) = -1 + 3 = 2 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} = (-2 \times -1) - (1 \times 1) = 2 - 1 = 1 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} = (-2 \times -3) - (1 \times 1) = 6 - 1 = 5 \][/tex]
Therefore:
[tex]\[ \vec{a} \times \vec{b} = 2\hat{i} - 1\hat{j} + 5\hat{k} \][/tex]
Thus, the cross product vector is:
[tex]\[ \vec{c} = 2\hat{i} - \hat{j} + 5\hat{k} \][/tex]
2. Compute the Magnitude of the Cross Product Vector:
[tex]\[ |\vec{c}| = \sqrt{(2)^2 + (-1)^2 + (5)^2} = \sqrt{4 + 1 + 25} = \sqrt{30} \approx 5.477225575051661 \][/tex]
3. Find the Unit Vector:
The unit vector in the direction of [tex]\(\vec{c}\)[/tex] is obtained by dividing each component by the magnitude:
[tex]\[ \hat{u} = \frac{1}{|\vec{c}|}\vec{c} = \frac{1}{\sqrt{30}}(2\hat{i} - \hat{j} + 5\hat{k}) \][/tex]
[tex]\[ = \left(\frac{2}{\sqrt{30}}\right)\hat{i} + \left(\frac{-1}{\sqrt{30}}\right)\hat{j} + \left(\frac{5}{\sqrt{30}}\right)\hat{k} \][/tex]
Numerically, this simplifies to:
[tex]\[ \hat{u} = 0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k} \][/tex]
In summary:
- The vector perpendicular to both [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is [tex]\(2\hat{i} - \hat{j} + 5\hat{k}\)[/tex].
- The magnitude of this vector is [tex]\(5.477225575051661\)[/tex].
- The unit vector in this direction is [tex]\(0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k}\)[/tex].
1. Compute the Cross Product:
The cross product of two vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] gives us a vector that is perpendicular to both.
Given:
[tex]\[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \][/tex]
[tex]\[ \vec{b} = \hat{i} - 3\hat{j} - \hat{k} \][/tex]
The cross product [tex]\(\vec{a} \times \vec{b}\)[/tex] is determined by:
[tex]\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -3 & -1 \end{vmatrix} \][/tex]
Expanding this determinant, we find:
[tex]\[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} \][/tex]
Calculate each of the smaller [tex]\(2 \times 2\)[/tex] determinants:
[tex]\[ \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} = (1 \times -1) - (1 \times -3) = -1 + 3 = 2 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} = (-2 \times -1) - (1 \times 1) = 2 - 1 = 1 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} = (-2 \times -3) - (1 \times 1) = 6 - 1 = 5 \][/tex]
Therefore:
[tex]\[ \vec{a} \times \vec{b} = 2\hat{i} - 1\hat{j} + 5\hat{k} \][/tex]
Thus, the cross product vector is:
[tex]\[ \vec{c} = 2\hat{i} - \hat{j} + 5\hat{k} \][/tex]
2. Compute the Magnitude of the Cross Product Vector:
[tex]\[ |\vec{c}| = \sqrt{(2)^2 + (-1)^2 + (5)^2} = \sqrt{4 + 1 + 25} = \sqrt{30} \approx 5.477225575051661 \][/tex]
3. Find the Unit Vector:
The unit vector in the direction of [tex]\(\vec{c}\)[/tex] is obtained by dividing each component by the magnitude:
[tex]\[ \hat{u} = \frac{1}{|\vec{c}|}\vec{c} = \frac{1}{\sqrt{30}}(2\hat{i} - \hat{j} + 5\hat{k}) \][/tex]
[tex]\[ = \left(\frac{2}{\sqrt{30}}\right)\hat{i} + \left(\frac{-1}{\sqrt{30}}\right)\hat{j} + \left(\frac{5}{\sqrt{30}}\right)\hat{k} \][/tex]
Numerically, this simplifies to:
[tex]\[ \hat{u} = 0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k} \][/tex]
In summary:
- The vector perpendicular to both [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is [tex]\(2\hat{i} - \hat{j} + 5\hat{k}\)[/tex].
- The magnitude of this vector is [tex]\(5.477225575051661\)[/tex].
- The unit vector in this direction is [tex]\(0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.