Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find a vector of magnitude [tex]\( S \)[/tex] unit that is perpendicular to both [tex]\(\vec{a} = -2\hat{i} + \hat{j} + \hat{k}\)[/tex] and [tex]\(\vec{b} = \hat{i} - 3\hat{j} - \hat{k}\)[/tex], we need to follow these steps:
1. Compute the Cross Product:
The cross product of two vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] gives us a vector that is perpendicular to both.
Given:
[tex]\[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \][/tex]
[tex]\[ \vec{b} = \hat{i} - 3\hat{j} - \hat{k} \][/tex]
The cross product [tex]\(\vec{a} \times \vec{b}\)[/tex] is determined by:
[tex]\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -3 & -1 \end{vmatrix} \][/tex]
Expanding this determinant, we find:
[tex]\[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} \][/tex]
Calculate each of the smaller [tex]\(2 \times 2\)[/tex] determinants:
[tex]\[ \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} = (1 \times -1) - (1 \times -3) = -1 + 3 = 2 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} = (-2 \times -1) - (1 \times 1) = 2 - 1 = 1 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} = (-2 \times -3) - (1 \times 1) = 6 - 1 = 5 \][/tex]
Therefore:
[tex]\[ \vec{a} \times \vec{b} = 2\hat{i} - 1\hat{j} + 5\hat{k} \][/tex]
Thus, the cross product vector is:
[tex]\[ \vec{c} = 2\hat{i} - \hat{j} + 5\hat{k} \][/tex]
2. Compute the Magnitude of the Cross Product Vector:
[tex]\[ |\vec{c}| = \sqrt{(2)^2 + (-1)^2 + (5)^2} = \sqrt{4 + 1 + 25} = \sqrt{30} \approx 5.477225575051661 \][/tex]
3. Find the Unit Vector:
The unit vector in the direction of [tex]\(\vec{c}\)[/tex] is obtained by dividing each component by the magnitude:
[tex]\[ \hat{u} = \frac{1}{|\vec{c}|}\vec{c} = \frac{1}{\sqrt{30}}(2\hat{i} - \hat{j} + 5\hat{k}) \][/tex]
[tex]\[ = \left(\frac{2}{\sqrt{30}}\right)\hat{i} + \left(\frac{-1}{\sqrt{30}}\right)\hat{j} + \left(\frac{5}{\sqrt{30}}\right)\hat{k} \][/tex]
Numerically, this simplifies to:
[tex]\[ \hat{u} = 0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k} \][/tex]
In summary:
- The vector perpendicular to both [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is [tex]\(2\hat{i} - \hat{j} + 5\hat{k}\)[/tex].
- The magnitude of this vector is [tex]\(5.477225575051661\)[/tex].
- The unit vector in this direction is [tex]\(0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k}\)[/tex].
1. Compute the Cross Product:
The cross product of two vectors [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] gives us a vector that is perpendicular to both.
Given:
[tex]\[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \][/tex]
[tex]\[ \vec{b} = \hat{i} - 3\hat{j} - \hat{k} \][/tex]
The cross product [tex]\(\vec{a} \times \vec{b}\)[/tex] is determined by:
[tex]\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 1 & -3 & -1 \end{vmatrix} \][/tex]
Expanding this determinant, we find:
[tex]\[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} \][/tex]
Calculate each of the smaller [tex]\(2 \times 2\)[/tex] determinants:
[tex]\[ \begin{vmatrix} 1 & 1 \\ -3 & -1 \end{vmatrix} = (1 \times -1) - (1 \times -3) = -1 + 3 = 2 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} = (-2 \times -1) - (1 \times 1) = 2 - 1 = 1 \][/tex]
[tex]\[ \begin{vmatrix} -2 & 1 \\ 1 & -3 \end{vmatrix} = (-2 \times -3) - (1 \times 1) = 6 - 1 = 5 \][/tex]
Therefore:
[tex]\[ \vec{a} \times \vec{b} = 2\hat{i} - 1\hat{j} + 5\hat{k} \][/tex]
Thus, the cross product vector is:
[tex]\[ \vec{c} = 2\hat{i} - \hat{j} + 5\hat{k} \][/tex]
2. Compute the Magnitude of the Cross Product Vector:
[tex]\[ |\vec{c}| = \sqrt{(2)^2 + (-1)^2 + (5)^2} = \sqrt{4 + 1 + 25} = \sqrt{30} \approx 5.477225575051661 \][/tex]
3. Find the Unit Vector:
The unit vector in the direction of [tex]\(\vec{c}\)[/tex] is obtained by dividing each component by the magnitude:
[tex]\[ \hat{u} = \frac{1}{|\vec{c}|}\vec{c} = \frac{1}{\sqrt{30}}(2\hat{i} - \hat{j} + 5\hat{k}) \][/tex]
[tex]\[ = \left(\frac{2}{\sqrt{30}}\right)\hat{i} + \left(\frac{-1}{\sqrt{30}}\right)\hat{j} + \left(\frac{5}{\sqrt{30}}\right)\hat{k} \][/tex]
Numerically, this simplifies to:
[tex]\[ \hat{u} = 0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k} \][/tex]
In summary:
- The vector perpendicular to both [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is [tex]\(2\hat{i} - \hat{j} + 5\hat{k}\)[/tex].
- The magnitude of this vector is [tex]\(5.477225575051661\)[/tex].
- The unit vector in this direction is [tex]\(0.3651483716701107 \hat{i} - 0.18257418583505536 \hat{j} + 0.9128709291752769 \hat{k}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.