Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's derive the value of [tex]\( A \)[/tex] for the given function [tex]\( f(x) \)[/tex] so that it is continuous at [tex]\( x = 0 \)[/tex]. To ensure continuity, we need the limit of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches 0 to equal [tex]\( f(0) \)[/tex], which is [tex]\( A \)[/tex].
Given the function:
[tex]\[ f(x) = \begin{cases} \frac{1 - \cos 6x}{4x^2} & \text{if } x \neq 0 \\ A & \text{if } x = 0 \end{cases} \][/tex]
To find [tex]\( A \)[/tex], we evaluate the limit:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos 6x}{4x^2} \][/tex]
To determine this limit, we can use L'Hôpital's Rule, which states that if we have a limit of the form [tex]\( \frac{0}{0} \)[/tex] or [tex]\( \frac{\infty}{\infty} \)[/tex], we can differentiate the numerator and the denominator until the limit can be evaluated directly.
First, let's verify that the limit is indeed a [tex]\( \frac{0}{0} \)[/tex] form:
[tex]\[ \lim_{x \to 0} (1 - \cos 6x) = 1 - \cos 0 = 0 \][/tex]
[tex]\[ \lim_{x \to 0} 4x^2 = 4 \cdot 0^2 = 0 \][/tex]
Since it is a [tex]\( \frac{0}{0} \)[/tex] form, we can apply L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos 6x}{4x^2} = \lim_{x \to 0} \frac{d}{dx} \left(1 - \cos 6x\right) \bigg/ \frac{d}{dx} (4x^2) \][/tex]
Now, we differentiate the numerator and the denominator:
[tex]\[ \frac{d}{dx} (1 - \cos 6x) = 6 \sin 6x \][/tex]
[tex]\[ \frac{d}{dx} (4x^2) = 8x \][/tex]
Applying L'Hôpital's Rule, we get:
[tex]\[ \lim_{x \to 0} \frac{6 \sin 6x}{8x} \][/tex]
We observe that this is still a [tex]\( \frac{0}{0} \)[/tex] form, so we apply L'Hôpital's Rule again:
[tex]\[ \lim_{x \to 0} \frac{6 \sin 6x}{8x} = \lim_{x \to 0} \frac{d}{dx} (6 \sin 6x) \bigg/ \frac{d}{dx} (8x) \][/tex]
Differentiating again:
[tex]\[ \frac{d}{dx} (6 \sin 6x) = 36 \cos 6x \][/tex]
[tex]\[ \frac{d}{dx} (8x) = 8 \][/tex]
Thus, the limit becomes:
[tex]\[ \lim_{x \to 0} \frac{36 \cos 6x}{8} \][/tex]
Evaluating the limit as [tex]\( x \to 0 \)[/tex]:
[tex]\[ \lim_{x \to 0} \frac{36 \cos 6x}{8} = \frac{36 \cdot \cos 0}{8} = \frac{36 \cdot 1}{8} = \frac{36}{8} = \frac{9}{2} \][/tex]
Therefore, for the function [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 0 \)[/tex], we need:
[tex]\[ A = \frac{9}{2} \][/tex]
So, the value of [tex]\( A \)[/tex] is [tex]\( \frac{9}{2} \)[/tex].
Given the function:
[tex]\[ f(x) = \begin{cases} \frac{1 - \cos 6x}{4x^2} & \text{if } x \neq 0 \\ A & \text{if } x = 0 \end{cases} \][/tex]
To find [tex]\( A \)[/tex], we evaluate the limit:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos 6x}{4x^2} \][/tex]
To determine this limit, we can use L'Hôpital's Rule, which states that if we have a limit of the form [tex]\( \frac{0}{0} \)[/tex] or [tex]\( \frac{\infty}{\infty} \)[/tex], we can differentiate the numerator and the denominator until the limit can be evaluated directly.
First, let's verify that the limit is indeed a [tex]\( \frac{0}{0} \)[/tex] form:
[tex]\[ \lim_{x \to 0} (1 - \cos 6x) = 1 - \cos 0 = 0 \][/tex]
[tex]\[ \lim_{x \to 0} 4x^2 = 4 \cdot 0^2 = 0 \][/tex]
Since it is a [tex]\( \frac{0}{0} \)[/tex] form, we can apply L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{1 - \cos 6x}{4x^2} = \lim_{x \to 0} \frac{d}{dx} \left(1 - \cos 6x\right) \bigg/ \frac{d}{dx} (4x^2) \][/tex]
Now, we differentiate the numerator and the denominator:
[tex]\[ \frac{d}{dx} (1 - \cos 6x) = 6 \sin 6x \][/tex]
[tex]\[ \frac{d}{dx} (4x^2) = 8x \][/tex]
Applying L'Hôpital's Rule, we get:
[tex]\[ \lim_{x \to 0} \frac{6 \sin 6x}{8x} \][/tex]
We observe that this is still a [tex]\( \frac{0}{0} \)[/tex] form, so we apply L'Hôpital's Rule again:
[tex]\[ \lim_{x \to 0} \frac{6 \sin 6x}{8x} = \lim_{x \to 0} \frac{d}{dx} (6 \sin 6x) \bigg/ \frac{d}{dx} (8x) \][/tex]
Differentiating again:
[tex]\[ \frac{d}{dx} (6 \sin 6x) = 36 \cos 6x \][/tex]
[tex]\[ \frac{d}{dx} (8x) = 8 \][/tex]
Thus, the limit becomes:
[tex]\[ \lim_{x \to 0} \frac{36 \cos 6x}{8} \][/tex]
Evaluating the limit as [tex]\( x \to 0 \)[/tex]:
[tex]\[ \lim_{x \to 0} \frac{36 \cos 6x}{8} = \frac{36 \cdot \cos 0}{8} = \frac{36 \cdot 1}{8} = \frac{36}{8} = \frac{9}{2} \][/tex]
Therefore, for the function [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 0 \)[/tex], we need:
[tex]\[ A = \frac{9}{2} \][/tex]
So, the value of [tex]\( A \)[/tex] is [tex]\( \frac{9}{2} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.