Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians, we can use our understanding of the tangent and inverse tangent functions.
1. Recognize the standard values and their inverses: We know that the tangent of certain key angles has specific values. One such value is [tex]\(\frac{\sqrt{3}}{3}\)[/tex].
2. Identity involving the tangent function: The tangent function for [tex]\(\frac{\pi}{6}\)[/tex] (30 degrees) gives us:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3} \][/tex]
3. Inverse of the tangent function: Taking the inverse tangent of [tex]\(\frac{\sqrt{3}}{3}\)[/tex], we obtain:
[tex]\[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \][/tex]
4. Odd function property: The tangent function is an odd function, meaning that [tex]\(\tan(-\theta) = -\tan(\theta)\)[/tex]. Therefore:
[tex]\[ \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3} \][/tex]
5. Find the desired inverse tangent value: Given [tex]\(\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}\)[/tex], the inverse tangent function gives us:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
In conclusion, the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians is:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
1. Recognize the standard values and their inverses: We know that the tangent of certain key angles has specific values. One such value is [tex]\(\frac{\sqrt{3}}{3}\)[/tex].
2. Identity involving the tangent function: The tangent function for [tex]\(\frac{\pi}{6}\)[/tex] (30 degrees) gives us:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3} \][/tex]
3. Inverse of the tangent function: Taking the inverse tangent of [tex]\(\frac{\sqrt{3}}{3}\)[/tex], we obtain:
[tex]\[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \][/tex]
4. Odd function property: The tangent function is an odd function, meaning that [tex]\(\tan(-\theta) = -\tan(\theta)\)[/tex]. Therefore:
[tex]\[ \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3} \][/tex]
5. Find the desired inverse tangent value: Given [tex]\(\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}\)[/tex], the inverse tangent function gives us:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
In conclusion, the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians is:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.