Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians, we can use our understanding of the tangent and inverse tangent functions.
1. Recognize the standard values and their inverses: We know that the tangent of certain key angles has specific values. One such value is [tex]\(\frac{\sqrt{3}}{3}\)[/tex].
2. Identity involving the tangent function: The tangent function for [tex]\(\frac{\pi}{6}\)[/tex] (30 degrees) gives us:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3} \][/tex]
3. Inverse of the tangent function: Taking the inverse tangent of [tex]\(\frac{\sqrt{3}}{3}\)[/tex], we obtain:
[tex]\[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \][/tex]
4. Odd function property: The tangent function is an odd function, meaning that [tex]\(\tan(-\theta) = -\tan(\theta)\)[/tex]. Therefore:
[tex]\[ \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3} \][/tex]
5. Find the desired inverse tangent value: Given [tex]\(\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}\)[/tex], the inverse tangent function gives us:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
In conclusion, the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians is:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
1. Recognize the standard values and their inverses: We know that the tangent of certain key angles has specific values. One such value is [tex]\(\frac{\sqrt{3}}{3}\)[/tex].
2. Identity involving the tangent function: The tangent function for [tex]\(\frac{\pi}{6}\)[/tex] (30 degrees) gives us:
[tex]\[ \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3} \][/tex]
3. Inverse of the tangent function: Taking the inverse tangent of [tex]\(\frac{\sqrt{3}}{3}\)[/tex], we obtain:
[tex]\[ \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} \][/tex]
4. Odd function property: The tangent function is an odd function, meaning that [tex]\(\tan(-\theta) = -\tan(\theta)\)[/tex]. Therefore:
[tex]\[ \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3} \][/tex]
5. Find the desired inverse tangent value: Given [tex]\(\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}\)[/tex], the inverse tangent function gives us:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
In conclusion, the exact value of [tex]\(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\)[/tex] in radians is:
[tex]\[ \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.