At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine what must be true if events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, let's review the definition of independent events in probability theory.
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if the occurrence of one event does not affect the occurrence of the other. In mathematical terms, this means that the probability of [tex]\( A \)[/tex] occurring given that [tex]\( B \)[/tex] has occurred is the same as the probability of [tex]\( A \)[/tex] occurring regardless of [tex]\( B \)[/tex]. This is expressed by the equation:
[tex]\[ P(A \mid B) = P(A) \][/tex]
Given this definition, let's examine each of the provided options:
1. [tex]\( P(A \mid B) = P(B) \)[/tex]
- This option suggests that the probability of [tex]\( A \)[/tex] occurring given [tex]\( B \)[/tex] is equal to the probability of [tex]\( B \)[/tex] itself, which is not a necessity for independence. Therefore, this option is incorrect.
2. [tex]\( P(A \mid B) = P(A) \)[/tex]
- This option aligns perfectly with the definition of independence. It states that the probability of [tex]\( A \)[/tex] occurring given [tex]\( B \)[/tex] is equal to the probability of [tex]\( A \)[/tex] occurring on its own, which is precisely the condition for independence. Therefore, this option is correct.
3. [tex]\( P(A) = P(B) \)[/tex]
- This option suggests that the probabilities of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occurring are equal. While this could be true in some cases, it is not a requirement for the events to be independent. Therefore, this option is incorrect.
4. [tex]\( P(A \mid B) = P(B \mid A) \)[/tex]
- This option implies a symmetry between [tex]\( A \)[/tex] and [tex]\( B \)[/tex], but it does not reflect the independence condition directly. Hence, this option is incorrect.
Based on the definitions and analysis, the correct condition for events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent is:
[tex]\[ P(A \mid B) = P(A) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{P(A \mid B) = P(A)} \][/tex]
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if the occurrence of one event does not affect the occurrence of the other. In mathematical terms, this means that the probability of [tex]\( A \)[/tex] occurring given that [tex]\( B \)[/tex] has occurred is the same as the probability of [tex]\( A \)[/tex] occurring regardless of [tex]\( B \)[/tex]. This is expressed by the equation:
[tex]\[ P(A \mid B) = P(A) \][/tex]
Given this definition, let's examine each of the provided options:
1. [tex]\( P(A \mid B) = P(B) \)[/tex]
- This option suggests that the probability of [tex]\( A \)[/tex] occurring given [tex]\( B \)[/tex] is equal to the probability of [tex]\( B \)[/tex] itself, which is not a necessity for independence. Therefore, this option is incorrect.
2. [tex]\( P(A \mid B) = P(A) \)[/tex]
- This option aligns perfectly with the definition of independence. It states that the probability of [tex]\( A \)[/tex] occurring given [tex]\( B \)[/tex] is equal to the probability of [tex]\( A \)[/tex] occurring on its own, which is precisely the condition for independence. Therefore, this option is correct.
3. [tex]\( P(A) = P(B) \)[/tex]
- This option suggests that the probabilities of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] occurring are equal. While this could be true in some cases, it is not a requirement for the events to be independent. Therefore, this option is incorrect.
4. [tex]\( P(A \mid B) = P(B \mid A) \)[/tex]
- This option implies a symmetry between [tex]\( A \)[/tex] and [tex]\( B \)[/tex], but it does not reflect the independence condition directly. Hence, this option is incorrect.
Based on the definitions and analysis, the correct condition for events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent is:
[tex]\[ P(A \mid B) = P(A) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{P(A \mid B) = P(A)} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.