Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the given problems step-by-step.
1. Understanding the given values:
- We are given that [tex]\( f^{-1}(-2) = 0.5 \)[/tex]. This means when inputting [tex]\(-2\)[/tex] into the inverse function [tex]\( f^{-1} \)[/tex], the output is [tex]\(0.5\)[/tex].
- We are also given that [tex]\( f(-4) = -4 \)[/tex]. This means when inputting [tex]\(-4\)[/tex] into the function [tex]\( f \)[/tex], the output is [tex]\(-4\)[/tex].
- We are asked to find [tex]\( f(f^{-1}(-2)) \)[/tex].
2. Finding [tex]\( f(f^{-1}(-2)) \)[/tex]:
- By the definition of inverse functions, [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] cancel each other out. Specifically:
[tex]\[ f(f^{-1}(x)) = x \][/tex]
for any [tex]\(x\)[/tex] in the domain of [tex]\(f^{-1}\)[/tex].
3. Applying this property:
- We need to evaluate [tex]\( f(f^{-1}(-2)) \)[/tex].
- By the property of inverse functions, substituting [tex]\(-2\)[/tex] into the expression, we get:
[tex]\[ f(f^{-1}(-2)) = -2 \][/tex]
So, let's summarize the results:
- [tex]\( f^{-1}(-2) = 0.5 \)[/tex]
- [tex]\( f(-4) = -4 \)[/tex]
- [tex]\( f(f^{-1}(-2)) = -2 \)[/tex]
Thus, the final answer to the problems is:
[tex]\[ (0.5, -4, -2) \][/tex]
1. Understanding the given values:
- We are given that [tex]\( f^{-1}(-2) = 0.5 \)[/tex]. This means when inputting [tex]\(-2\)[/tex] into the inverse function [tex]\( f^{-1} \)[/tex], the output is [tex]\(0.5\)[/tex].
- We are also given that [tex]\( f(-4) = -4 \)[/tex]. This means when inputting [tex]\(-4\)[/tex] into the function [tex]\( f \)[/tex], the output is [tex]\(-4\)[/tex].
- We are asked to find [tex]\( f(f^{-1}(-2)) \)[/tex].
2. Finding [tex]\( f(f^{-1}(-2)) \)[/tex]:
- By the definition of inverse functions, [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] cancel each other out. Specifically:
[tex]\[ f(f^{-1}(x)) = x \][/tex]
for any [tex]\(x\)[/tex] in the domain of [tex]\(f^{-1}\)[/tex].
3. Applying this property:
- We need to evaluate [tex]\( f(f^{-1}(-2)) \)[/tex].
- By the property of inverse functions, substituting [tex]\(-2\)[/tex] into the expression, we get:
[tex]\[ f(f^{-1}(-2)) = -2 \][/tex]
So, let's summarize the results:
- [tex]\( f^{-1}(-2) = 0.5 \)[/tex]
- [tex]\( f(-4) = -4 \)[/tex]
- [tex]\( f(f^{-1}(-2)) = -2 \)[/tex]
Thus, the final answer to the problems is:
[tex]\[ (0.5, -4, -2) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.