Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the given system of linear equations using the given methods:
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.