Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the given system of linear equations using the given methods:
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.