At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve the given system of linear equations using the given methods:
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.