Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The sum of the interior angles of an [tex]\( n \)[/tex]-sided polygon is [tex]\( 1440^{\circ} \)[/tex].

a. Find the value of [tex]\( n \)[/tex].
b. Deduce the name of the polygon.


Sagot :

To find the value of [tex]\( n \)[/tex] (the number of sides) for a polygon whose sum of interior angles is [tex]\( 1440^\circ \)[/tex], you can follow these steps:

1. Recall the formula for the sum of interior angles of an [tex]\( n \)[/tex]-sided polygon:
The sum of the interior angles of an [tex]\( n \)[/tex]-sided polygon is given by the formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]

2. Set up the equation:
Given that the sum of the interior angles is [tex]\( 1440^\circ \)[/tex], we can set up the equation using the formula:
[tex]\[ (n - 2) \times 180 = 1440 \][/tex]

3. Solve for [tex]\( n \)[/tex]:
Divide both sides of the equation by [tex]\( 180 \)[/tex] to isolate [tex]\( (n - 2) \)[/tex]:
[tex]\[ n - 2 = \frac{1440}{180} \][/tex]

4. Calculate the value inside the equation:
[tex]\[ n - 2 = 8 \][/tex]

5. Add 2 to both sides to solve for [tex]\( n \)[/tex]:
[tex]\[ n = 8 + 2 \][/tex]
[tex]\[ n = 10 \][/tex]

6. Identify the polygon:
A polygon with [tex]\( 10 \)[/tex] sides is called a decagon.

Therefore, the value of [tex]\( n \)[/tex] is [tex]\( 10 \)[/tex], which means that the polygon is a decagon.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.