Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the inverse of the function [tex]\( f(x) = x^{\frac{3}{7}} - 10 \)[/tex], follow these steps:
1. Set [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = x^{\frac{3}{7}} - 10 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
- Start by isolating the term with [tex]\( x \)[/tex]. Add 10 to both sides:
[tex]\[ y + 10 = x^{\frac{3}{7}} \][/tex]
- To solve for [tex]\( x \)[/tex], raise both sides of the equation to the power of [tex]\( \frac{7}{3} \)[/tex] (since [tex]\((a^{\frac{3}{7}})^{\frac{7}{3}} = a\)[/tex]):
[tex]\[ (y + 10)^{\frac{7}{3}} = x \][/tex]
3. Write the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to express the inverse function:
[tex]\[ f^{-1}(x) = (x + 10)^{\frac{7}{3}} \][/tex]
Hence, the inverse of the function [tex]\( f(x) = x^{\frac{3}{7}} - 10 \)[/tex] is:
[tex]\[ f^{-1}(x) = (x + 10)^{\frac{7}{3}} \][/tex]
1. Set [tex]\( y = f(x) \)[/tex]:
[tex]\[ y = x^{\frac{3}{7}} - 10 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
- Start by isolating the term with [tex]\( x \)[/tex]. Add 10 to both sides:
[tex]\[ y + 10 = x^{\frac{3}{7}} \][/tex]
- To solve for [tex]\( x \)[/tex], raise both sides of the equation to the power of [tex]\( \frac{7}{3} \)[/tex] (since [tex]\((a^{\frac{3}{7}})^{\frac{7}{3}} = a\)[/tex]):
[tex]\[ (y + 10)^{\frac{7}{3}} = x \][/tex]
3. Write the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to express the inverse function:
[tex]\[ f^{-1}(x) = (x + 10)^{\frac{7}{3}} \][/tex]
Hence, the inverse of the function [tex]\( f(x) = x^{\frac{3}{7}} - 10 \)[/tex] is:
[tex]\[ f^{-1}(x) = (x + 10)^{\frac{7}{3}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.