Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for [tex]\(m\)[/tex] and [tex]\(c\)[/tex] given the linear function [tex]\(f(x) = mx + c\)[/tex] with the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex], follow these steps:
1. Set up the equations using the given points:
We know that if [tex]\(f(x) = mx + c\)[/tex], then plugging in the values for the points should satisfy the equation.
- For [tex]\(x = 4\)[/tex] and [tex]\(f(4) = 11\)[/tex]:
[tex]\[ m \cdot 4 + c = 11 \][/tex]
- For [tex]\(x = 5\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ m \cdot 5 + c = 13 \][/tex]
2. Write the system of linear equations:
From the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ 4m + c = 11 \quad \text{(1)} \][/tex]
[tex]\[ 5m + c = 13 \quad \text{(2)} \][/tex]
3. Solve the system of equations:
First, subtract equation (1) from equation (2) to eliminate [tex]\(c\)[/tex]:
[tex]\[ (5m + c) - (4m + c) = 13 - 11 \][/tex]
Simplifying this:
[tex]\[ 5m + c - 4m - c = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
4. Find the value of [tex]\(c\)[/tex]:
Substitute [tex]\(m = 2\)[/tex] back into one of the original equations. Using equation (1):
[tex]\[ 4m + c = 11 \][/tex]
Substitute [tex]\(m = 2\)[/tex]:
[tex]\[ 4 \cdot 2 + c = 11 \][/tex]
[tex]\[ 8 + c = 11 \][/tex]
Subtract 8 from both sides:
[tex]\[ c = 3 \][/tex]
Hence, the values of [tex]\(m\)[/tex] and [tex]\(c\)[/tex] are:
[tex]\[ m = 2 \quad \text{and} \quad c = 3 \][/tex]
1. Set up the equations using the given points:
We know that if [tex]\(f(x) = mx + c\)[/tex], then plugging in the values for the points should satisfy the equation.
- For [tex]\(x = 4\)[/tex] and [tex]\(f(4) = 11\)[/tex]:
[tex]\[ m \cdot 4 + c = 11 \][/tex]
- For [tex]\(x = 5\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ m \cdot 5 + c = 13 \][/tex]
2. Write the system of linear equations:
From the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ 4m + c = 11 \quad \text{(1)} \][/tex]
[tex]\[ 5m + c = 13 \quad \text{(2)} \][/tex]
3. Solve the system of equations:
First, subtract equation (1) from equation (2) to eliminate [tex]\(c\)[/tex]:
[tex]\[ (5m + c) - (4m + c) = 13 - 11 \][/tex]
Simplifying this:
[tex]\[ 5m + c - 4m - c = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
4. Find the value of [tex]\(c\)[/tex]:
Substitute [tex]\(m = 2\)[/tex] back into one of the original equations. Using equation (1):
[tex]\[ 4m + c = 11 \][/tex]
Substitute [tex]\(m = 2\)[/tex]:
[tex]\[ 4 \cdot 2 + c = 11 \][/tex]
[tex]\[ 8 + c = 11 \][/tex]
Subtract 8 from both sides:
[tex]\[ c = 3 \][/tex]
Hence, the values of [tex]\(m\)[/tex] and [tex]\(c\)[/tex] are:
[tex]\[ m = 2 \quad \text{and} \quad c = 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.