Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for [tex]\(m\)[/tex] and [tex]\(c\)[/tex] given the linear function [tex]\(f(x) = mx + c\)[/tex] with the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex], follow these steps:
1. Set up the equations using the given points:
We know that if [tex]\(f(x) = mx + c\)[/tex], then plugging in the values for the points should satisfy the equation.
- For [tex]\(x = 4\)[/tex] and [tex]\(f(4) = 11\)[/tex]:
[tex]\[ m \cdot 4 + c = 11 \][/tex]
- For [tex]\(x = 5\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ m \cdot 5 + c = 13 \][/tex]
2. Write the system of linear equations:
From the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ 4m + c = 11 \quad \text{(1)} \][/tex]
[tex]\[ 5m + c = 13 \quad \text{(2)} \][/tex]
3. Solve the system of equations:
First, subtract equation (1) from equation (2) to eliminate [tex]\(c\)[/tex]:
[tex]\[ (5m + c) - (4m + c) = 13 - 11 \][/tex]
Simplifying this:
[tex]\[ 5m + c - 4m - c = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
4. Find the value of [tex]\(c\)[/tex]:
Substitute [tex]\(m = 2\)[/tex] back into one of the original equations. Using equation (1):
[tex]\[ 4m + c = 11 \][/tex]
Substitute [tex]\(m = 2\)[/tex]:
[tex]\[ 4 \cdot 2 + c = 11 \][/tex]
[tex]\[ 8 + c = 11 \][/tex]
Subtract 8 from both sides:
[tex]\[ c = 3 \][/tex]
Hence, the values of [tex]\(m\)[/tex] and [tex]\(c\)[/tex] are:
[tex]\[ m = 2 \quad \text{and} \quad c = 3 \][/tex]
1. Set up the equations using the given points:
We know that if [tex]\(f(x) = mx + c\)[/tex], then plugging in the values for the points should satisfy the equation.
- For [tex]\(x = 4\)[/tex] and [tex]\(f(4) = 11\)[/tex]:
[tex]\[ m \cdot 4 + c = 11 \][/tex]
- For [tex]\(x = 5\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ m \cdot 5 + c = 13 \][/tex]
2. Write the system of linear equations:
From the points [tex]\(f(4) = 11\)[/tex] and [tex]\(f(5) = 13\)[/tex]:
[tex]\[ 4m + c = 11 \quad \text{(1)} \][/tex]
[tex]\[ 5m + c = 13 \quad \text{(2)} \][/tex]
3. Solve the system of equations:
First, subtract equation (1) from equation (2) to eliminate [tex]\(c\)[/tex]:
[tex]\[ (5m + c) - (4m + c) = 13 - 11 \][/tex]
Simplifying this:
[tex]\[ 5m + c - 4m - c = 2 \][/tex]
[tex]\[ m = 2 \][/tex]
4. Find the value of [tex]\(c\)[/tex]:
Substitute [tex]\(m = 2\)[/tex] back into one of the original equations. Using equation (1):
[tex]\[ 4m + c = 11 \][/tex]
Substitute [tex]\(m = 2\)[/tex]:
[tex]\[ 4 \cdot 2 + c = 11 \][/tex]
[tex]\[ 8 + c = 11 \][/tex]
Subtract 8 from both sides:
[tex]\[ c = 3 \][/tex]
Hence, the values of [tex]\(m\)[/tex] and [tex]\(c\)[/tex] are:
[tex]\[ m = 2 \quad \text{and} \quad c = 3 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.