Answered

Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A silver dollar is dropped from the top of a building that is 1387 feet tall. Use the position function below for free-falling objects.

[tex]\[ s(t) = -16t^2 + v_0 t + 1387 \][/tex]

(a) Determine the position and velocity functions for the coin.

[tex]\[
\begin{array}{l}
s(t) = -16t^2 + 1387 \\
v(t) = -32t
\end{array}
\][/tex]

(b) Determine the average velocity on the interval [tex]\([3,4]\)[/tex].

[tex]\[ -112 \text{ ft/s} \][/tex]

(c) Find the instantaneous velocities when [tex]\(t=3\)[/tex] seconds and [tex]\(t=4\)[/tex] seconds.

[tex]\[
\begin{array}{l}
v(3) = -96 \text{ ft/s} \\
v(4) = -128 \text{ ft/s}
\end{array}
\][/tex]

(d) Find the time required for the coin to reach ground level. (Round your answer to three decimal places.)

[tex]\[ t = 9.179 \text{ s} \][/tex]

(e) Find the velocity of the coin at impact. (Round your answer to three decimal places.)

[tex]\[ -293.7 \text{ ft/s} \][/tex]


Sagot :

Let's break down the problem step-by-step:

### (a) Determine the position and velocity functions for the coin:
Given the position function for free-falling objects:
[tex]\[ s(t) = -16t^2 + v_0 t + s_0 \][/tex]

For this problem:
- The initial velocity [tex]\( v_0 \)[/tex] is 0 since the coin is dropped.
- The initial position [tex]\( s_0 \)[/tex] is the height of the building, which is 1387 feet.

Thus, the position function simplifies to:
[tex]\[ s(t) = -16t^2 + 1387 \][/tex]

The velocity function [tex]\( v(t) \)[/tex] is the derivative of the position function [tex]\( s(t) \)[/tex]:
[tex]\[ v(t) = \frac{d}{dt}[-16t^2 + 1387] \][/tex]
[tex]\[ v(t) = -32t \][/tex]

### (b) Determine the average velocity on the interval [tex]\([3, 4]\)[/tex]:
The average velocity [tex]\( \overline{v} \)[/tex] on an interval [tex]\([t_1, t_2]\)[/tex] is computed as:
[tex]\[ \overline{v} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]

Given [tex]\( t_1 = 3 \)[/tex] seconds and [tex]\( t_2 = 4 \)[/tex] seconds:
[tex]\[ s(3) = -16(3)^2 + 1387 \][/tex]
[tex]\[ s(3) = -144 + 1387 = 1243 \][/tex]

[tex]\[ s(4) = -16(4)^2 + 1387 \][/tex]
[tex]\[ s(4) = -256 + 1387 = 1131 \][/tex]

Thus, the average velocity is:
[tex]\[ \overline{v} = \frac{1131 - 1243}{4 - 3} = \frac{-112}{1} = -112 \, \text{ft/s} \][/tex]

### (c) Find the instantaneous velocities when [tex]\( t = 3 \)[/tex] seconds and [tex]\( t = 4 \)[/tex] seconds:

The instantaneous velocity at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ v(3) = -32(3) = -96 \, \text{ft/s} \][/tex]

The instantaneous velocity at [tex]\( t = 4 \)[/tex] seconds:
[tex]\[ v(4) = -32(4) = -128 \, \text{ft/s} \][/tex]

### (d) Find the time required for the coin to reach the ground level:
To find the time [tex]\( t \)[/tex] when the coin reaches the ground level (which corresponds to [tex]\( s(t) = 0 \)[/tex]):

Set the position function to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 1387 \][/tex]
[tex]\[ 16t^2 = 1387 \][/tex]
[tex]\[ t^2 = \frac{1387}{16} \][/tex]
[tex]\[ t = \sqrt{\frac{1387}{16}} \][/tex]
[tex]\[ t = \frac{\sqrt{1387}}{4} \][/tex]

[tex]\[ t \approx 9.179 \, \text{s} \][/tex] (Rounded to three decimal places)

### (e) Find the velocity of the coin at impact:
The velocity at impact is the instantaneous velocity at the time the coin reaches the ground level, [tex]\( t = \frac{\sqrt{1387}}{4} \)[/tex]:

[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -32 \left( \frac{\sqrt{1387}}{4} \right) \][/tex]
[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -8\sqrt{1387} \][/tex]

[tex]\[ v \approx -293.7 \, \text{ft/s} \][/tex] (Rounded to three decimal places)

Thus, the complete solution step-by-step is as follows:
- (a) Position function: [tex]\( s(t) = -16t^2 + 1387 \)[/tex], Velocity function: [tex]\( v(t) = -32t \)[/tex]
- (b) Average velocity on [tex]\([3, 4]\)[/tex]: [tex]\( -112 \, \text{ft/s} \)[/tex]
- (c) Instantaneous velocities: [tex]\( v(3) = -96 \, \text{ft/s} \)[/tex] and [tex]\( v(4) = -128 \, \text{ft/s} \)[/tex]
- (d) Time to reach the ground: [tex]\( t \approx 9.179 \, \text{s} \)[/tex]
- (e) Velocity at impact: [tex]\( -293.7 \, \text{ft/s} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.