Answered

Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A silver dollar is dropped from the top of a building that is 1387 feet tall. Use the position function below for free-falling objects.

[tex]\[ s(t) = -16t^2 + v_0 t + 1387 \][/tex]

(a) Determine the position and velocity functions for the coin.

[tex]\[
\begin{array}{l}
s(t) = -16t^2 + 1387 \\
v(t) = -32t
\end{array}
\][/tex]

(b) Determine the average velocity on the interval [tex]\([3,4]\)[/tex].

[tex]\[ -112 \text{ ft/s} \][/tex]

(c) Find the instantaneous velocities when [tex]\(t=3\)[/tex] seconds and [tex]\(t=4\)[/tex] seconds.

[tex]\[
\begin{array}{l}
v(3) = -96 \text{ ft/s} \\
v(4) = -128 \text{ ft/s}
\end{array}
\][/tex]

(d) Find the time required for the coin to reach ground level. (Round your answer to three decimal places.)

[tex]\[ t = 9.179 \text{ s} \][/tex]

(e) Find the velocity of the coin at impact. (Round your answer to three decimal places.)

[tex]\[ -293.7 \text{ ft/s} \][/tex]


Sagot :

Let's break down the problem step-by-step:

### (a) Determine the position and velocity functions for the coin:
Given the position function for free-falling objects:
[tex]\[ s(t) = -16t^2 + v_0 t + s_0 \][/tex]

For this problem:
- The initial velocity [tex]\( v_0 \)[/tex] is 0 since the coin is dropped.
- The initial position [tex]\( s_0 \)[/tex] is the height of the building, which is 1387 feet.

Thus, the position function simplifies to:
[tex]\[ s(t) = -16t^2 + 1387 \][/tex]

The velocity function [tex]\( v(t) \)[/tex] is the derivative of the position function [tex]\( s(t) \)[/tex]:
[tex]\[ v(t) = \frac{d}{dt}[-16t^2 + 1387] \][/tex]
[tex]\[ v(t) = -32t \][/tex]

### (b) Determine the average velocity on the interval [tex]\([3, 4]\)[/tex]:
The average velocity [tex]\( \overline{v} \)[/tex] on an interval [tex]\([t_1, t_2]\)[/tex] is computed as:
[tex]\[ \overline{v} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]

Given [tex]\( t_1 = 3 \)[/tex] seconds and [tex]\( t_2 = 4 \)[/tex] seconds:
[tex]\[ s(3) = -16(3)^2 + 1387 \][/tex]
[tex]\[ s(3) = -144 + 1387 = 1243 \][/tex]

[tex]\[ s(4) = -16(4)^2 + 1387 \][/tex]
[tex]\[ s(4) = -256 + 1387 = 1131 \][/tex]

Thus, the average velocity is:
[tex]\[ \overline{v} = \frac{1131 - 1243}{4 - 3} = \frac{-112}{1} = -112 \, \text{ft/s} \][/tex]

### (c) Find the instantaneous velocities when [tex]\( t = 3 \)[/tex] seconds and [tex]\( t = 4 \)[/tex] seconds:

The instantaneous velocity at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ v(3) = -32(3) = -96 \, \text{ft/s} \][/tex]

The instantaneous velocity at [tex]\( t = 4 \)[/tex] seconds:
[tex]\[ v(4) = -32(4) = -128 \, \text{ft/s} \][/tex]

### (d) Find the time required for the coin to reach the ground level:
To find the time [tex]\( t \)[/tex] when the coin reaches the ground level (which corresponds to [tex]\( s(t) = 0 \)[/tex]):

Set the position function to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 1387 \][/tex]
[tex]\[ 16t^2 = 1387 \][/tex]
[tex]\[ t^2 = \frac{1387}{16} \][/tex]
[tex]\[ t = \sqrt{\frac{1387}{16}} \][/tex]
[tex]\[ t = \frac{\sqrt{1387}}{4} \][/tex]

[tex]\[ t \approx 9.179 \, \text{s} \][/tex] (Rounded to three decimal places)

### (e) Find the velocity of the coin at impact:
The velocity at impact is the instantaneous velocity at the time the coin reaches the ground level, [tex]\( t = \frac{\sqrt{1387}}{4} \)[/tex]:

[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -32 \left( \frac{\sqrt{1387}}{4} \right) \][/tex]
[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -8\sqrt{1387} \][/tex]

[tex]\[ v \approx -293.7 \, \text{ft/s} \][/tex] (Rounded to three decimal places)

Thus, the complete solution step-by-step is as follows:
- (a) Position function: [tex]\( s(t) = -16t^2 + 1387 \)[/tex], Velocity function: [tex]\( v(t) = -32t \)[/tex]
- (b) Average velocity on [tex]\([3, 4]\)[/tex]: [tex]\( -112 \, \text{ft/s} \)[/tex]
- (c) Instantaneous velocities: [tex]\( v(3) = -96 \, \text{ft/s} \)[/tex] and [tex]\( v(4) = -128 \, \text{ft/s} \)[/tex]
- (d) Time to reach the ground: [tex]\( t \approx 9.179 \, \text{s} \)[/tex]
- (e) Velocity at impact: [tex]\( -293.7 \, \text{ft/s} \)[/tex]