Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyze the given data to determine which dependent variable has a constant rate of change and what that constant rate is.
The table gives us the following values for days, average speeds, and distances:
- Days: 3, 4, 5, 6, 7
- Average Speeds (in mph): 55, 58, 63, 65, 68
- Distances (in miles): 495, 660, 825, 990, 1155
First, we need to calculate the rate of change for the average speed and the distance over time. The rate of change between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula: [tex]\((y_2 - y_1) / (x_2 - x_1)\)[/tex].
### Rate of Change for Average Speed:
- From Day 3 to Day 4: [tex]\((58 - 55) / (4 - 3) = 3.0\)[/tex] mph/day
- From Day 4 to Day 5: [tex]\((63 - 58) / (5 - 4) = 5.0\)[/tex] mph/day
- From Day 5 to Day 6: [tex]\((65 - 63) / (6 - 5) = 2.0\)[/tex] mph/day
- From Day 6 to Day 7: [tex]\((68 - 65) / (7 - 6) = 3.0\)[/tex] mph/day
The rates of change for average speed are: 3.0, 5.0, 2.0, 3.0 mph/day. Since these values are not constant, the average speed does not have a constant rate of change.
### Rate of Change for Distance:
- From Day 3 to Day 4: [tex]\((660 - 495) / (4 - 3) = 165.0\)[/tex] miles/day
- From Day 4 to Day 5: [tex]\((825 - 660) / (5 - 4) = 165.0\)[/tex] miles/day
- From Day 5 to Day 6: [tex]\((990 - 825) / (6 - 5) = 165.0\)[/tex] miles/day
- From Day 6 to Day 7: [tex]\((1155 - 990) / (7 - 6) = 165.0\)[/tex] miles/day
The rates of change for distance are: 165.0, 165.0, 165.0, 165.0 miles/day. Since these values are constant, the distance traveled has a constant rate of change.
### Conclusion:
The dependent variable that has a constant rate of change is the distance.
The constant rate of change for the distance is 165.0 miles/day.
The table gives us the following values for days, average speeds, and distances:
- Days: 3, 4, 5, 6, 7
- Average Speeds (in mph): 55, 58, 63, 65, 68
- Distances (in miles): 495, 660, 825, 990, 1155
First, we need to calculate the rate of change for the average speed and the distance over time. The rate of change between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula: [tex]\((y_2 - y_1) / (x_2 - x_1)\)[/tex].
### Rate of Change for Average Speed:
- From Day 3 to Day 4: [tex]\((58 - 55) / (4 - 3) = 3.0\)[/tex] mph/day
- From Day 4 to Day 5: [tex]\((63 - 58) / (5 - 4) = 5.0\)[/tex] mph/day
- From Day 5 to Day 6: [tex]\((65 - 63) / (6 - 5) = 2.0\)[/tex] mph/day
- From Day 6 to Day 7: [tex]\((68 - 65) / (7 - 6) = 3.0\)[/tex] mph/day
The rates of change for average speed are: 3.0, 5.0, 2.0, 3.0 mph/day. Since these values are not constant, the average speed does not have a constant rate of change.
### Rate of Change for Distance:
- From Day 3 to Day 4: [tex]\((660 - 495) / (4 - 3) = 165.0\)[/tex] miles/day
- From Day 4 to Day 5: [tex]\((825 - 660) / (5 - 4) = 165.0\)[/tex] miles/day
- From Day 5 to Day 6: [tex]\((990 - 825) / (6 - 5) = 165.0\)[/tex] miles/day
- From Day 6 to Day 7: [tex]\((1155 - 990) / (7 - 6) = 165.0\)[/tex] miles/day
The rates of change for distance are: 165.0, 165.0, 165.0, 165.0 miles/day. Since these values are constant, the distance traveled has a constant rate of change.
### Conclusion:
The dependent variable that has a constant rate of change is the distance.
The constant rate of change for the distance is 165.0 miles/day.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.