Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find [tex]\(\sin \frac{4 \pi}{3}\)[/tex], follow the steps below:
1. Determine the Angle in Radians:
The angle given is [tex]\(\frac{4 \pi}{3}\)[/tex]. This angle is in the third quadrant of the unit circle.
2. Understand the Reference Angle:
The reference angle for [tex]\(\frac{4 \pi}{3}\)[/tex] in the third quadrant can be found as follows:
[tex]\[ \pi + \frac{\pi}{3} = \frac{4\pi}{3} \][/tex]
3. Calculate the Sine of the Reference Angle:
The reference angle is [tex]\(\frac{\pi}{3}\)[/tex]. We know that:
[tex]\[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \][/tex]
4. Consider the Sign in the Third Quadrant:
In the third quadrant, the sine function is negative. Therefore:
[tex]\[ \sin \frac{4 \pi}{3} = -\sin \frac{\pi}{3} \][/tex]
5. Substitute the Sine Value:
Since [tex]\(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
6. Verification with Decimal Approximation:
The numerical approximation for [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] is:
[tex]\[ \sin \frac{4 \pi}{3} \approx -0.8660254037844386 \][/tex]
Therefore, the answer is:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
Breaking it down:
[tex]\[ \sin \frac{4 \pi}{3}=\sin \left(\pi + \frac{\pi}{3} \right)= -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
So the final result is:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
1. Determine the Angle in Radians:
The angle given is [tex]\(\frac{4 \pi}{3}\)[/tex]. This angle is in the third quadrant of the unit circle.
2. Understand the Reference Angle:
The reference angle for [tex]\(\frac{4 \pi}{3}\)[/tex] in the third quadrant can be found as follows:
[tex]\[ \pi + \frac{\pi}{3} = \frac{4\pi}{3} \][/tex]
3. Calculate the Sine of the Reference Angle:
The reference angle is [tex]\(\frac{\pi}{3}\)[/tex]. We know that:
[tex]\[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \][/tex]
4. Consider the Sign in the Third Quadrant:
In the third quadrant, the sine function is negative. Therefore:
[tex]\[ \sin \frac{4 \pi}{3} = -\sin \frac{\pi}{3} \][/tex]
5. Substitute the Sine Value:
Since [tex]\(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\)[/tex]:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
6. Verification with Decimal Approximation:
The numerical approximation for [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] is:
[tex]\[ \sin \frac{4 \pi}{3} \approx -0.8660254037844386 \][/tex]
Therefore, the answer is:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
Breaking it down:
[tex]\[ \sin \frac{4 \pi}{3}=\sin \left(\pi + \frac{\pi}{3} \right)= -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
So the final result is:
[tex]\[ \sin \frac{4 \pi}{3} = -\frac{\sqrt{3}}{2} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.