Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

A relation is defined from [tex]\(\{1, 2, 3, 4\}\)[/tex] to the set of natural numbers. Find the range of the relation in each of the following cases:

a. "a square of"

b. "a square root of"

c. "equal"

d. "half of"

e. "cube of"

f. "cube root of"


Sagot :

Sure, let's address each case and find the range of the relation defined on the set [tex]\( \{1, 2, 3, 4\} \)[/tex]:

### a. "a square of"
For each element in our set [tex]\( \{1, 2, 3, 4\} \)[/tex], we need to find its square:
- [tex]\( 1^2 = 1 \)[/tex]
- [tex]\( 2^2 = 4 \)[/tex]
- [tex]\( 3^2 = 9 \)[/tex]
- [tex]\( 4^2 = 16 \)[/tex]

Thus, the range of the relation "a square of" is [tex]\( \{1, 4, 9, 16\} \)[/tex].

### b. "a square root of"
For each element in our set [tex]\( \{1, 2, 3, 4\} \)[/tex], we need to find its square root:
- [tex]\( \sqrt{1} = 1.0 \)[/tex]
- [tex]\( \sqrt{2} \approx 1.4142135623730951 \)[/tex]
- [tex]\( \sqrt{3} \approx 1.7320508075688772 \)[/tex]
- [tex]\( \sqrt{4} = 2.0 \)[/tex]

Thus, the range of the relation "a square root of" is [tex]\( \{1.0, 1.4142135623730951, 1.7320508075688772, 2.0\} \)[/tex].

### c. "equal"
Since this relation implies that each element maps to itself, the range will simply be the elements of our set:
[tex]\[ \{1, 2, 3, 4\} \][/tex]

### d. "half of"
For each element in our set [tex]\( \{1, 2, 3, 4\} \)[/tex], we need to find half of it:
- [tex]\( \frac{1}{2} = 0.5 \)[/tex]
- [tex]\( \frac{2}{2} = 1.0 \)[/tex]
- [tex]\( \frac{3}{2} = 1.5 \)[/tex]
- [tex]\( \frac{4}{2} = 2.0 \)[/tex]

Thus, the range of the relation "half of" is [tex]\( \{0.5, 1.0, 1.5, 2.0\} \)[/tex].

### e. "cube of"
For each element in our set [tex]\( \{1, 2, 3, 4\} \)[/tex], we need to find its cube:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]

Thus, the range of the relation "cube of" is [tex]\( \{1, 8, 27, 64\} \)[/tex].

### f. "cube root of"
For each element in our set [tex]\( \{1, 2, 3, 4\} \)[/tex], we need to find its cube root:
- [tex]\( \sqrt[3]{1} = 1.0 \)[/tex]
- [tex]\( \sqrt[3]{2} \approx 1.2599210498948732 \)[/tex]
- [tex]\( \sqrt[3]{3} \approx 1.4422495703074083 \)[/tex]
- [tex]\( \sqrt[3]{4} \approx 1.5874010519681994 \)[/tex]

Thus, the range of the relation "cube root of" is [tex]\( \{1.0, 1.2599210498948732, 1.4422495703074083, 1.5874010519681994\} \)[/tex].

Summarizing, the ranges are:
- a. "a square of": [tex]\( \{1, 4, 9, 16\} \)[/tex]
- b. "a square root of": [tex]\( \{1.0, 1.4142135623730951, 1.7320508075688772, 2.0\} \)[/tex]
- c. "equal": [tex]\( \{1, 2, 3, 4\} \)[/tex]
- d. "half of": [tex]\( \{0.5, 1.0, 1.5, 2.0\} \)[/tex]
- e. "cube of": [tex]\( \{1, 8, 27, 64\} \)[/tex]
- f. "cube root of": [tex]\( \{1.0, 1.2599210498948732, 1.4422495703074083, 1.5874010519681994\} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.