Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given distances to classify the triangle formed by the cities A, B, and C.
We are given:
- The distance between city A and city B (AB) = 22 miles.
- The distance between city B and city C (BC) = 54 miles.
- The distance between city A and city C (AC) = 51 miles.
To classify the triangle based on its angles, we'll use the properties of the squares of the sides and the Pythagorean theorem:
1. If [tex]\( a^2 + b^2 > c^2 \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the sides of the triangle, the triangle is acute.
2. If [tex]\( a^2 + b^2 < c^2 \)[/tex], the triangle is obtuse.
3. If [tex]\( a^2 + b^2 = c^2 \)[/tex], the triangle is right.
Calculating the squares of each side:
- [tex]\( AB^2 = 22^2 = 484 \)[/tex]
- [tex]\( BC^2 = 54^2 = 2916 \)[/tex]
- [tex]\( AC^2 = 51^2 = 2601 \)[/tex]
Now, let's compare the sums of the squares of two sides to the square of the third side to determine the type of triangle:
Step 1: Check [tex]\( AB^2 + BC^2 \)[/tex] and compare it to [tex]\( AC^2 \)[/tex]:
- [tex]\( AB^2 + BC^2 = 484 + 2916 = 3400 \)[/tex]
- [tex]\( AC^2 = 2601 \)[/tex]
Since [tex]\( 484 + 2916 > 2601 \)[/tex]:
- [tex]\( 22^2 + 54^2 > 51^2 \)[/tex]
This comparison indicates that the triangle is obtuse.
Therefore, the triangle formed by the cities A, B, and C is an obtuse triangle. The correct statement is:
"An obtuse triangle, because [tex]\(22^2+54^2 > 51^2\)[/tex]"
We are given:
- The distance between city A and city B (AB) = 22 miles.
- The distance between city B and city C (BC) = 54 miles.
- The distance between city A and city C (AC) = 51 miles.
To classify the triangle based on its angles, we'll use the properties of the squares of the sides and the Pythagorean theorem:
1. If [tex]\( a^2 + b^2 > c^2 \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the sides of the triangle, the triangle is acute.
2. If [tex]\( a^2 + b^2 < c^2 \)[/tex], the triangle is obtuse.
3. If [tex]\( a^2 + b^2 = c^2 \)[/tex], the triangle is right.
Calculating the squares of each side:
- [tex]\( AB^2 = 22^2 = 484 \)[/tex]
- [tex]\( BC^2 = 54^2 = 2916 \)[/tex]
- [tex]\( AC^2 = 51^2 = 2601 \)[/tex]
Now, let's compare the sums of the squares of two sides to the square of the third side to determine the type of triangle:
Step 1: Check [tex]\( AB^2 + BC^2 \)[/tex] and compare it to [tex]\( AC^2 \)[/tex]:
- [tex]\( AB^2 + BC^2 = 484 + 2916 = 3400 \)[/tex]
- [tex]\( AC^2 = 2601 \)[/tex]
Since [tex]\( 484 + 2916 > 2601 \)[/tex]:
- [tex]\( 22^2 + 54^2 > 51^2 \)[/tex]
This comparison indicates that the triangle is obtuse.
Therefore, the triangle formed by the cities A, B, and C is an obtuse triangle. The correct statement is:
"An obtuse triangle, because [tex]\(22^2+54^2 > 51^2\)[/tex]"
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.