Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step.
### (i) Ratio of an Object's Weight on the Moon to its Weight on the Earth
The weight of an object is given by [tex]\[W = mg\][/tex], where:
- [tex]\(m\)[/tex] is the mass of the object.
- [tex]\(g\)[/tex] is the acceleration due to gravity.
Given that the gravitational force is proportional to the mass of the planet and inversely proportional to the square of its radius, the weight of an object on the moon (W_moon) and on the earth (W_earth) can be compared.
Given data:
- The mass of the moon is [tex]\(0.0123\)[/tex] times the mass of the earth ([tex]\(m_m = 0.0123 m_e\)[/tex]).
- The radius of the moon ([tex]\(R_{\text{moon}}\)[/tex]) is [tex]\(0.27\)[/tex] times the radius of the earth ([tex]\(R_{\text{moon}} = 0.27 R_{\text{earth}}\)[/tex]).
The weight of the object on the moon:
[tex]\[ W_{\text{moon}} = m \cdot g_{\text{moon}} \][/tex]
The weight of the object on the earth:
[tex]\[ W_{\text{earth}} = m \cdot g_{\text{earth}} \][/tex]
The gravitational acceleration on the moon ([tex]\(g_{\text{moon}}\)[/tex]) and earth ([tex]\(g_{\text{earth}}\)[/tex]) are related by the mass and radius:
[tex]\[ g_{\text{moon}} = g_{\text{earth}} \cdot \left(\frac{m_m}{m_e} \cdot \frac{R_{\text{earth}}^2}{R_{\text{moon}}^2}\right) = g_{\text{earth}} \cdot \left(\frac{0.0123}{1} \cdot \frac{1}{(0.27)^2}\right) \][/tex]
Calculating the above ratio:
[tex]\[ \frac{W_{\text{moon}}}{W_{\text{earth}}} = \frac{g_{\text{moon}}}{g_{\text{earth}}} \][/tex]
[tex]\[ = 0.0123 \cdot \frac{1}{(0.27)^2} \][/tex]
[tex]\[ \approx 0.00089667 \][/tex]
So, the ratio of the object's weight on the moon to its weight on the earth is approximately [tex]\(0.00089667\)[/tex].
### (ii) Acceleration of Free Fall on the Moon
We need to find the acceleration of free fall on the moon ([tex]\(g_{\text{moon}}\)[/tex]).
We already derived the equation for [tex]\(g_{\text{moon}}\)[/tex]:
[tex]\[ g_{\text{moon}} = g_{\text{earth}} \cdot \left(\frac{R_{\text{moon}}}{R_{\text{earth}}}\right)^2 \][/tex]
Given:
[tex]\[ g_{\text{earth}} = 9.8 \, \text{m/s}^2 \][/tex]
Substitute the given values:
[tex]\[ g_{\text{moon}} = 9.8 \, \text{m/s}^2 \cdot (0.27)^2 \][/tex]
[tex]\[ g_{\text{moon}} \approx 0.71442 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of free fall on the moon is approximately [tex]\(0.71442 \, \text{m/s}^2\)[/tex].
### (i) Ratio of an Object's Weight on the Moon to its Weight on the Earth
The weight of an object is given by [tex]\[W = mg\][/tex], where:
- [tex]\(m\)[/tex] is the mass of the object.
- [tex]\(g\)[/tex] is the acceleration due to gravity.
Given that the gravitational force is proportional to the mass of the planet and inversely proportional to the square of its radius, the weight of an object on the moon (W_moon) and on the earth (W_earth) can be compared.
Given data:
- The mass of the moon is [tex]\(0.0123\)[/tex] times the mass of the earth ([tex]\(m_m = 0.0123 m_e\)[/tex]).
- The radius of the moon ([tex]\(R_{\text{moon}}\)[/tex]) is [tex]\(0.27\)[/tex] times the radius of the earth ([tex]\(R_{\text{moon}} = 0.27 R_{\text{earth}}\)[/tex]).
The weight of the object on the moon:
[tex]\[ W_{\text{moon}} = m \cdot g_{\text{moon}} \][/tex]
The weight of the object on the earth:
[tex]\[ W_{\text{earth}} = m \cdot g_{\text{earth}} \][/tex]
The gravitational acceleration on the moon ([tex]\(g_{\text{moon}}\)[/tex]) and earth ([tex]\(g_{\text{earth}}\)[/tex]) are related by the mass and radius:
[tex]\[ g_{\text{moon}} = g_{\text{earth}} \cdot \left(\frac{m_m}{m_e} \cdot \frac{R_{\text{earth}}^2}{R_{\text{moon}}^2}\right) = g_{\text{earth}} \cdot \left(\frac{0.0123}{1} \cdot \frac{1}{(0.27)^2}\right) \][/tex]
Calculating the above ratio:
[tex]\[ \frac{W_{\text{moon}}}{W_{\text{earth}}} = \frac{g_{\text{moon}}}{g_{\text{earth}}} \][/tex]
[tex]\[ = 0.0123 \cdot \frac{1}{(0.27)^2} \][/tex]
[tex]\[ \approx 0.00089667 \][/tex]
So, the ratio of the object's weight on the moon to its weight on the earth is approximately [tex]\(0.00089667\)[/tex].
### (ii) Acceleration of Free Fall on the Moon
We need to find the acceleration of free fall on the moon ([tex]\(g_{\text{moon}}\)[/tex]).
We already derived the equation for [tex]\(g_{\text{moon}}\)[/tex]:
[tex]\[ g_{\text{moon}} = g_{\text{earth}} \cdot \left(\frac{R_{\text{moon}}}{R_{\text{earth}}}\right)^2 \][/tex]
Given:
[tex]\[ g_{\text{earth}} = 9.8 \, \text{m/s}^2 \][/tex]
Substitute the given values:
[tex]\[ g_{\text{moon}} = 9.8 \, \text{m/s}^2 \cdot (0.27)^2 \][/tex]
[tex]\[ g_{\text{moon}} \approx 0.71442 \, \text{m/s}^2 \][/tex]
Therefore, the acceleration of free fall on the moon is approximately [tex]\(0.71442 \, \text{m/s}^2\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.