At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's carefully determine the complement of the set [tex]\( S \)[/tex] given the problem description.
### Step-by-Step Solution:
1. Define the Set [tex]\( S \)[/tex]:
The set [tex]\( S \)[/tex] is defined as:
[tex]\[ S = \{ x \mid x < 5 \} \][/tex]
This set includes all real numbers that are less than 5.
2. Understand the Concept of Complement:
The complement of a set [tex]\( S \)[/tex], denoted as [tex]\( S' \)[/tex], is the set of all elements in the universal set that are not in [tex]\( S \)[/tex].
3. Determine the Universal Set:
In this problem, the universal set is all real numbers, typically denoted by [tex]\( \mathbb{R} \)[/tex].
4. Find the Complement [tex]\( S' \)[/tex]:
Since [tex]\( S \)[/tex] includes all [tex]\( x \)[/tex] such that [tex]\( x < 5 \)[/tex], the complement will include all [tex]\( x \)[/tex] that are not less than 5. This can be expressed as:
[tex]\[ S' = \{ x \mid x \geq 5 \} \][/tex]
5. Check the Given Options:
Let's evaluate the given options for the complement of [tex]\( S \)[/tex]:
- [tex]\(\{ x \mid x \neq 5 \}\)[/tex]: This set includes all real numbers except 5, which is not correct since it excludes numbers like 4.9 or 5.1.
- [tex]\(\{ 6, 7, 8 \ldots \}\)[/tex]: This set includes only natural numbers greater than or equal to 6, which is incorrect. It does not account for numbers like 5, 5.5, etc.
- [tex]\(\{ x \mid x > 5 \}\)[/tex]: This set includes all real numbers greater than 5. This misses out on the number 5 itself.
- [tex]\(\{ x \mid x \geq 5 \}\)[/tex]: This set includes all real numbers greater than or equal to 5, which is correct as it includes the number 5 and all numbers greater than 5.
6. Conclusion:
Therefore, the complement of [tex]\( S \)[/tex] is:
[tex]\[ \boxed{\{ x \mid x \geq 5 \}} \][/tex]
### Step-by-Step Solution:
1. Define the Set [tex]\( S \)[/tex]:
The set [tex]\( S \)[/tex] is defined as:
[tex]\[ S = \{ x \mid x < 5 \} \][/tex]
This set includes all real numbers that are less than 5.
2. Understand the Concept of Complement:
The complement of a set [tex]\( S \)[/tex], denoted as [tex]\( S' \)[/tex], is the set of all elements in the universal set that are not in [tex]\( S \)[/tex].
3. Determine the Universal Set:
In this problem, the universal set is all real numbers, typically denoted by [tex]\( \mathbb{R} \)[/tex].
4. Find the Complement [tex]\( S' \)[/tex]:
Since [tex]\( S \)[/tex] includes all [tex]\( x \)[/tex] such that [tex]\( x < 5 \)[/tex], the complement will include all [tex]\( x \)[/tex] that are not less than 5. This can be expressed as:
[tex]\[ S' = \{ x \mid x \geq 5 \} \][/tex]
5. Check the Given Options:
Let's evaluate the given options for the complement of [tex]\( S \)[/tex]:
- [tex]\(\{ x \mid x \neq 5 \}\)[/tex]: This set includes all real numbers except 5, which is not correct since it excludes numbers like 4.9 or 5.1.
- [tex]\(\{ 6, 7, 8 \ldots \}\)[/tex]: This set includes only natural numbers greater than or equal to 6, which is incorrect. It does not account for numbers like 5, 5.5, etc.
- [tex]\(\{ x \mid x > 5 \}\)[/tex]: This set includes all real numbers greater than 5. This misses out on the number 5 itself.
- [tex]\(\{ x \mid x \geq 5 \}\)[/tex]: This set includes all real numbers greater than or equal to 5, which is correct as it includes the number 5 and all numbers greater than 5.
6. Conclusion:
Therefore, the complement of [tex]\( S \)[/tex] is:
[tex]\[ \boxed{\{ x \mid x \geq 5 \}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.