Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve and graph the given compound inequality, we will address each inequality individually and then combine the solutions obtained.
### Inequality 1: [tex]\(2(2x - 1) + 7 < 13\)[/tex]
1. Distribute the 2 on the left side:
[tex]\[ 2(2x - 1) + 7 < 13 \][/tex]
[tex]\[ 4x - 2 + 7 < 13 \][/tex]
2. Combine like terms:
[tex]\[ 4x + 5 < 13 \][/tex]
3. Isolate the variable [tex]\(x\)[/tex]:
- Subtract 5 from both sides:
[tex]\[ 4x < 8 \][/tex]
- Divide by 4:
[tex]\[ x < 2 \][/tex]
### Inequality 2: [tex]\(-2x + 5 \leq -10\)[/tex]
1. Isolate the variable [tex]\(x\)[/tex]:
- Subtract 5 from both sides:
[tex]\[ -2x \leq -15 \][/tex]
2. Divide by -2 and reverse the inequality sign (since we are dividing by a negative number):
[tex]\[ x \geq 7.5 \][/tex]
### Combining the Solutions
The solution for the compound inequality is the union of the two individual solutions, which can be written as:
[tex]\[ x < 2 \quad \text{or} \quad x \geq 7.5 \][/tex]
### Graphing the Combined Inequalities
1. Draw a number line.
2. Plot the solutions:
- For [tex]\(x < 2\)[/tex], shade the region to the left of 2 and draw an open circle at 2 to indicate that 2 is not included.
- For [tex]\(x \geq 7.5\)[/tex], shade the region to the right of 7.5 and draw a closed circle at 7.5 to indicate that 7.5 is included.
The graph of the inequality [tex]\(2(2x - 1) + 7 < 13\)[/tex] or [tex]\(-2x + 5 \leq -10\)[/tex] will look like this:
```
<---(====O----------------]====>
x < 2 x ≥ 7.5
```
Where:
- O indicates an open circle at [tex]\(x = 2\)[/tex] (not included).
- ] indicates a closed circle at [tex]\(x = 7.5\)[/tex] (included).
- The shading on the left represents all [tex]\(x < 2\)[/tex].
- The shading on the right represents all [tex]\(x \geq 7.5\)[/tex].
Thus, the solution set for the given compound inequality is all [tex]\(x\)[/tex] such that [tex]\(x < 2\)[/tex] or [tex]\(x \geq 7.5\)[/tex].
### Inequality 1: [tex]\(2(2x - 1) + 7 < 13\)[/tex]
1. Distribute the 2 on the left side:
[tex]\[ 2(2x - 1) + 7 < 13 \][/tex]
[tex]\[ 4x - 2 + 7 < 13 \][/tex]
2. Combine like terms:
[tex]\[ 4x + 5 < 13 \][/tex]
3. Isolate the variable [tex]\(x\)[/tex]:
- Subtract 5 from both sides:
[tex]\[ 4x < 8 \][/tex]
- Divide by 4:
[tex]\[ x < 2 \][/tex]
### Inequality 2: [tex]\(-2x + 5 \leq -10\)[/tex]
1. Isolate the variable [tex]\(x\)[/tex]:
- Subtract 5 from both sides:
[tex]\[ -2x \leq -15 \][/tex]
2. Divide by -2 and reverse the inequality sign (since we are dividing by a negative number):
[tex]\[ x \geq 7.5 \][/tex]
### Combining the Solutions
The solution for the compound inequality is the union of the two individual solutions, which can be written as:
[tex]\[ x < 2 \quad \text{or} \quad x \geq 7.5 \][/tex]
### Graphing the Combined Inequalities
1. Draw a number line.
2. Plot the solutions:
- For [tex]\(x < 2\)[/tex], shade the region to the left of 2 and draw an open circle at 2 to indicate that 2 is not included.
- For [tex]\(x \geq 7.5\)[/tex], shade the region to the right of 7.5 and draw a closed circle at 7.5 to indicate that 7.5 is included.
The graph of the inequality [tex]\(2(2x - 1) + 7 < 13\)[/tex] or [tex]\(-2x + 5 \leq -10\)[/tex] will look like this:
```
<---(====O----------------]====>
x < 2 x ≥ 7.5
```
Where:
- O indicates an open circle at [tex]\(x = 2\)[/tex] (not included).
- ] indicates a closed circle at [tex]\(x = 7.5\)[/tex] (included).
- The shading on the left represents all [tex]\(x < 2\)[/tex].
- The shading on the right represents all [tex]\(x \geq 7.5\)[/tex].
Thus, the solution set for the given compound inequality is all [tex]\(x\)[/tex] such that [tex]\(x < 2\)[/tex] or [tex]\(x \geq 7.5\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.