Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given problem of finding all numbers that satisfy the condition "Three times two less than a number is greater than or equal to five times the number," we need to translate this verbal statement into a mathematical inequality and solve it step-by-step.
1. Translate the statement into a mathematical inequality:
Given:
- A number is represented by [tex]\( n \)[/tex].
- "Two less than a number" is represented by [tex]\( n - 2 \)[/tex].
- "Three times two less than a number" translates to [tex]\( 3(n - 2) \)[/tex].
- This expression needs to be greater than or equal to five times the number ([tex]\( 5n \)[/tex]).
So, the inequality that represents this relationship is:
[tex]\[ 3(n - 2) \geq 5n \][/tex]
2. Solve the inequality step-by-step:
Step 1: Distribute the 3 on the left side of the inequality:
[tex]\[ 3(n - 2) = 3n - 6 \][/tex]
Therefore, the inequality becomes:
[tex]\[ 3n - 6 \geq 5n \][/tex]
Step 2: Move all terms involving [tex]\( n \)[/tex] to one side by subtracting [tex]\( 3n \)[/tex] from both sides:
[tex]\[ 3n - 6 - 3n \geq 5n - 3n \][/tex]
Simplifying the terms:
[tex]\[ -6 \geq 2n \][/tex]
Step 3: Divide both sides by 2 to isolate [tex]\( n \)[/tex]:
[tex]\[ \frac{-6}{2} \geq \frac{2n}{2} \][/tex]
[tex]\[ -3 \geq n \][/tex]
This simplifies to:
[tex]\[ n \leq -3 \][/tex]
Thus, the solution to the inequality is [tex]\( n \leq -3 \)[/tex]. In other words, any number less than or equal to [tex]\(-3\)[/tex] will satisfy the given condition that three times two less than the number is greater than or equal to five times the number.
1. Translate the statement into a mathematical inequality:
Given:
- A number is represented by [tex]\( n \)[/tex].
- "Two less than a number" is represented by [tex]\( n - 2 \)[/tex].
- "Three times two less than a number" translates to [tex]\( 3(n - 2) \)[/tex].
- This expression needs to be greater than or equal to five times the number ([tex]\( 5n \)[/tex]).
So, the inequality that represents this relationship is:
[tex]\[ 3(n - 2) \geq 5n \][/tex]
2. Solve the inequality step-by-step:
Step 1: Distribute the 3 on the left side of the inequality:
[tex]\[ 3(n - 2) = 3n - 6 \][/tex]
Therefore, the inequality becomes:
[tex]\[ 3n - 6 \geq 5n \][/tex]
Step 2: Move all terms involving [tex]\( n \)[/tex] to one side by subtracting [tex]\( 3n \)[/tex] from both sides:
[tex]\[ 3n - 6 - 3n \geq 5n - 3n \][/tex]
Simplifying the terms:
[tex]\[ -6 \geq 2n \][/tex]
Step 3: Divide both sides by 2 to isolate [tex]\( n \)[/tex]:
[tex]\[ \frac{-6}{2} \geq \frac{2n}{2} \][/tex]
[tex]\[ -3 \geq n \][/tex]
This simplifies to:
[tex]\[ n \leq -3 \][/tex]
Thus, the solution to the inequality is [tex]\( n \leq -3 \)[/tex]. In other words, any number less than or equal to [tex]\(-3\)[/tex] will satisfy the given condition that three times two less than the number is greater than or equal to five times the number.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.