Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the maximum profit and the corresponding selling price for the dog food, let's break down the problem into a series of steps.
1. Understand the Functions:
- The revenue function, [tex]\( R(x) \)[/tex], represents how much money is made from sales:
[tex]\[ R(x) = -31.72x^2 + 2030x \][/tex]
- The cost function, [tex]\( C(x) \)[/tex], represents the total cost of producing and selling the x units:
[tex]\[ C(x) = -126.96x + 26391 \][/tex]
2. Calculate the Profit Function:
- The profit function, [tex]\( P(x) \)[/tex], is the revenue function minus the cost function:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
- Substituting the given functions:
[tex]\[ P(x) = (-31.72x^2 + 2030x) - (-126.96x + 26391) \][/tex]
Simplify to get:
[tex]\[ P(x) = -31.72x^2 + 2030x + 126.96x - 26391 \][/tex]
[tex]\[ P(x) = -31.72x^2 + 2156.96x - 26391 \][/tex]
3. Find the Critical Points:
- To find the maximum profit, we need to find the critical points by taking the derivative of [tex]\( P(x) \)[/tex] and setting it to zero:
[tex]\[ P'(x) = \frac{d}{dx}(-31.72x^2 + 2156.96x - 26391) \][/tex]
[tex]\[ P'(x) = -63.44x + 2156.96 \][/tex]
Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ -63.44x + 2156.96 = 0 \][/tex]
[tex]\[ x = \frac{2156.96}{63.44} \][/tex]
[tex]\[ x \approx 34 \][/tex]
4. Calculate the Maximum Profit:
- Substitute [tex]\( x = 34 \)[/tex] back into the profit function to find the maximum profit:
[tex]\[ P(34) = -31.72(34)^2 + 2156.96(34) - 26391 \][/tex]
Calculate each term:
[tex]\[ -31.72 \times 1156 + 2156.96 \times 34 - 26391 \][/tex]
Simplify the terms:
[tex]\[ -36704.32 + 73337 - 26391 \][/tex]
[tex]\[ P(34) \approx 10277 \][/tex]
Therefore, the maximum profit of [tex]$10,277 can be made when the selling price of the dog food is set to $[/tex]34 per bag.
The correct answers to fill in the blanks are:
- The maximum profit of \[tex]$10,277 can be made when the selling price of the dog food is set to \$[/tex]34 per bag.
1. Understand the Functions:
- The revenue function, [tex]\( R(x) \)[/tex], represents how much money is made from sales:
[tex]\[ R(x) = -31.72x^2 + 2030x \][/tex]
- The cost function, [tex]\( C(x) \)[/tex], represents the total cost of producing and selling the x units:
[tex]\[ C(x) = -126.96x + 26391 \][/tex]
2. Calculate the Profit Function:
- The profit function, [tex]\( P(x) \)[/tex], is the revenue function minus the cost function:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
- Substituting the given functions:
[tex]\[ P(x) = (-31.72x^2 + 2030x) - (-126.96x + 26391) \][/tex]
Simplify to get:
[tex]\[ P(x) = -31.72x^2 + 2030x + 126.96x - 26391 \][/tex]
[tex]\[ P(x) = -31.72x^2 + 2156.96x - 26391 \][/tex]
3. Find the Critical Points:
- To find the maximum profit, we need to find the critical points by taking the derivative of [tex]\( P(x) \)[/tex] and setting it to zero:
[tex]\[ P'(x) = \frac{d}{dx}(-31.72x^2 + 2156.96x - 26391) \][/tex]
[tex]\[ P'(x) = -63.44x + 2156.96 \][/tex]
Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ -63.44x + 2156.96 = 0 \][/tex]
[tex]\[ x = \frac{2156.96}{63.44} \][/tex]
[tex]\[ x \approx 34 \][/tex]
4. Calculate the Maximum Profit:
- Substitute [tex]\( x = 34 \)[/tex] back into the profit function to find the maximum profit:
[tex]\[ P(34) = -31.72(34)^2 + 2156.96(34) - 26391 \][/tex]
Calculate each term:
[tex]\[ -31.72 \times 1156 + 2156.96 \times 34 - 26391 \][/tex]
Simplify the terms:
[tex]\[ -36704.32 + 73337 - 26391 \][/tex]
[tex]\[ P(34) \approx 10277 \][/tex]
Therefore, the maximum profit of [tex]$10,277 can be made when the selling price of the dog food is set to $[/tex]34 per bag.
The correct answers to fill in the blanks are:
- The maximum profit of \[tex]$10,277 can be made when the selling price of the dog food is set to \$[/tex]34 per bag.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.