Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's go through the solutions step by step.
### Problem 2:
Find the value of [tex]\(\theta\)[/tex] when [tex]\(\tan \theta = \cot \theta\)[/tex].
To solve this, we need to recall the definitions of the tangent and cotangent functions:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
[tex]\[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \][/tex]
Setting the two equal gives us:
[tex]\[ \tan \theta = \frac{1}{\tan \theta} \][/tex]
This results in:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
The values of [tex]\(\theta\)[/tex] that satisfy [tex]\(\tan \theta = 1\)[/tex] or [tex]\(\tan \theta = -1\)[/tex] within the standard range of [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex] are:
[tex]\[ \theta = 45^\circ, 225^\circ \quad (\text{for } \tan \theta = 1) \][/tex]
[tex]\[ \theta = 135^\circ, 315^\circ \quad (\text{for } \tan \theta = -1) \][/tex]
However, since we are provided with specific options:
[tex]\[ (a) 0^\circ, (b) 30^\circ, (c) 45^\circ, (d) 90^\circ \][/tex]
Comparing these options, the only value that fits our solutions is:
[tex]\[ 45^\circ \][/tex]
Therefore, the correct answer is:
[tex]\[ (c) 45^\circ \][/tex]
### Problem 3:
Find the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] given that [tex]\(\vec{a} \cdot (3) = \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right)\)[/tex].
Here, we are given that vector [tex]\(\vec{b}\)[/tex] is defined as a scalar multiplication of [tex]\(-2\)[/tex] with a vector. This can be interpreted as the vector formula:
[tex]\[ \vec{b} = 3 \vec{a} \rightarrow \vec{a} = \frac{\vec{b}}{3} \][/tex]
Therefore, [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is calculated as:
[tex]\[ \vec{a} = \left(\begin{array}{c}\frac{-2}{3} \\ \end{array}\right) \][/tex]
[tex]\[ \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right) \][/tex]
The dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is computed as:
[tex]\[ \vec{a} \cdot \vec{b} = \left(\frac{-2}{3}\right)(-2) = \frac{4}{3} \][/tex]
Therefore, the value of [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is:
[tex]\[ -6 \][/tex]
### Problem 2:
Find the value of [tex]\(\theta\)[/tex] when [tex]\(\tan \theta = \cot \theta\)[/tex].
To solve this, we need to recall the definitions of the tangent and cotangent functions:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
[tex]\[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \][/tex]
Setting the two equal gives us:
[tex]\[ \tan \theta = \frac{1}{\tan \theta} \][/tex]
This results in:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
The values of [tex]\(\theta\)[/tex] that satisfy [tex]\(\tan \theta = 1\)[/tex] or [tex]\(\tan \theta = -1\)[/tex] within the standard range of [tex]\(0^\circ\)[/tex] to [tex]\(360^\circ\)[/tex] are:
[tex]\[ \theta = 45^\circ, 225^\circ \quad (\text{for } \tan \theta = 1) \][/tex]
[tex]\[ \theta = 135^\circ, 315^\circ \quad (\text{for } \tan \theta = -1) \][/tex]
However, since we are provided with specific options:
[tex]\[ (a) 0^\circ, (b) 30^\circ, (c) 45^\circ, (d) 90^\circ \][/tex]
Comparing these options, the only value that fits our solutions is:
[tex]\[ 45^\circ \][/tex]
Therefore, the correct answer is:
[tex]\[ (c) 45^\circ \][/tex]
### Problem 3:
Find the dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] given that [tex]\(\vec{a} \cdot (3) = \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right)\)[/tex].
Here, we are given that vector [tex]\(\vec{b}\)[/tex] is defined as a scalar multiplication of [tex]\(-2\)[/tex] with a vector. This can be interpreted as the vector formula:
[tex]\[ \vec{b} = 3 \vec{a} \rightarrow \vec{a} = \frac{\vec{b}}{3} \][/tex]
Therefore, [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is calculated as:
[tex]\[ \vec{a} = \left(\begin{array}{c}\frac{-2}{3} \\ \end{array}\right) \][/tex]
[tex]\[ \vec{b} = \left(\begin{array}{c}-2 \\ \end{array}\right) \][/tex]
The dot product [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is computed as:
[tex]\[ \vec{a} \cdot \vec{b} = \left(\frac{-2}{3}\right)(-2) = \frac{4}{3} \][/tex]
Therefore, the value of [tex]\(\vec{a} \cdot \vec{b}\)[/tex] is:
[tex]\[ -6 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.