Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which inequality has no solution, we will analyze each inequality step-by-step.
### Inequality 1: [tex]\(6(x + 2) > x - 3\)[/tex]
1. Distribute the 6 on the left side:
[tex]\[ 6x + 12 > x - 3 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 5x + 12 > -3 \][/tex]
3. Subtract 12 from both sides:
[tex]\[ 5x > -15 \][/tex]
4. Divide by 5:
[tex]\[ x > -3 \][/tex]
This inequality has a solution [tex]\(x > -3\)[/tex].
### Inequality 2: [tex]\(3 + 4x \leq 2(1 + 2x)\)[/tex]
1. Distribute the 2 on the right side:
[tex]\[ 3 + 4x \leq 2 + 4x \][/tex]
2. Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 3 \leq 2 \][/tex]
This is a contradiction because 3 is never less than or equal to 2. Therefore, this inequality has no solution.
### Inequality 3: [tex]\(-2(x + 6) < x - 20\)[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left side:
[tex]\[ -2x - 12 < x - 20 \][/tex]
2. Add [tex]\(2x\)[/tex] to both sides:
[tex]\[ -12 < 3x - 20 \][/tex]
3. Add 20 to both sides:
[tex]\[ 8 < 3x \][/tex]
4. Divide by 3:
[tex]\[ \frac{8}{3} < x \][/tex]
or
[tex]\[ x > \frac{8}{3} \][/tex]
This inequality has a solution [tex]\(x > \frac{8}{3}\)[/tex].
### Inequality 4: [tex]\(x - 9 < 3(x - 3)\)[/tex]
1. Distribute the 3 on the right side:
[tex]\[ x - 9 < 3x - 9 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ -9 < 2x - 9 \][/tex]
3. Add 9 to both sides:
[tex]\[ 0 < 2x \][/tex]
4. Divide by 2:
[tex]\[ 0 < x \][/tex]
or
[tex]\[ x > 0 \][/tex]
This inequality has a solution [tex]\(x > 0\)[/tex].
### Conclusion
The inequality that has no solution is:
[tex]\[ 3 + 4x \leq 2(1 + 2x) \][/tex]
### Inequality 1: [tex]\(6(x + 2) > x - 3\)[/tex]
1. Distribute the 6 on the left side:
[tex]\[ 6x + 12 > x - 3 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 5x + 12 > -3 \][/tex]
3. Subtract 12 from both sides:
[tex]\[ 5x > -15 \][/tex]
4. Divide by 5:
[tex]\[ x > -3 \][/tex]
This inequality has a solution [tex]\(x > -3\)[/tex].
### Inequality 2: [tex]\(3 + 4x \leq 2(1 + 2x)\)[/tex]
1. Distribute the 2 on the right side:
[tex]\[ 3 + 4x \leq 2 + 4x \][/tex]
2. Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 3 \leq 2 \][/tex]
This is a contradiction because 3 is never less than or equal to 2. Therefore, this inequality has no solution.
### Inequality 3: [tex]\(-2(x + 6) < x - 20\)[/tex]
1. Distribute the [tex]\(-2\)[/tex] on the left side:
[tex]\[ -2x - 12 < x - 20 \][/tex]
2. Add [tex]\(2x\)[/tex] to both sides:
[tex]\[ -12 < 3x - 20 \][/tex]
3. Add 20 to both sides:
[tex]\[ 8 < 3x \][/tex]
4. Divide by 3:
[tex]\[ \frac{8}{3} < x \][/tex]
or
[tex]\[ x > \frac{8}{3} \][/tex]
This inequality has a solution [tex]\(x > \frac{8}{3}\)[/tex].
### Inequality 4: [tex]\(x - 9 < 3(x - 3)\)[/tex]
1. Distribute the 3 on the right side:
[tex]\[ x - 9 < 3x - 9 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ -9 < 2x - 9 \][/tex]
3. Add 9 to both sides:
[tex]\[ 0 < 2x \][/tex]
4. Divide by 2:
[tex]\[ 0 < x \][/tex]
or
[tex]\[ x > 0 \][/tex]
This inequality has a solution [tex]\(x > 0\)[/tex].
### Conclusion
The inequality that has no solution is:
[tex]\[ 3 + 4x \leq 2(1 + 2x) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.