Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's explore and understand the matrix [tex]\( A \)[/tex] given by:
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
To provide a detailed solution, we'll analyze the structure of this matrix step-by-step:
1. Matrix Definition:
- Matrix Size: The matrix [tex]\( A \)[/tex] is a 2x2 matrix, which means it has 2 rows and 2 columns.
- Elements of the Matrix: Each element in the matrix is denoted by [tex]\( a_{ij} \)[/tex] where [tex]\( i \)[/tex] represents the row number and [tex]\( j \)[/tex] represents the column number.
In the matrix [tex]\( A \)[/tex]:
- [tex]\( a_{11} = 3 \)[/tex]
- [tex]\( a_{12} = 1 \)[/tex]
- [tex]\( a_{21} = -3 \)[/tex]
- [tex]\( a_{22} = -1 \)[/tex]
2. Matrix Representation:
Let's explicitly list the elements of the matrix:
- The first row consists of the elements 3 and 1.
- The second row consists of the elements -3 and -1.
Therefore, the matrix [tex]\( A \)[/tex] is represented as:
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
3. Understanding the Matrix:
- Each element has a specific position in the matrix, which affects various linear transformations when this matrix is applied to a vector.
### Conclusion
We have expressed and verified the matrix [tex]\( A \)[/tex] given by:
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
This concludes our detailed step-by-step exploration of the structure and elements of matrix [tex]\( A \)[/tex].
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
To provide a detailed solution, we'll analyze the structure of this matrix step-by-step:
1. Matrix Definition:
- Matrix Size: The matrix [tex]\( A \)[/tex] is a 2x2 matrix, which means it has 2 rows and 2 columns.
- Elements of the Matrix: Each element in the matrix is denoted by [tex]\( a_{ij} \)[/tex] where [tex]\( i \)[/tex] represents the row number and [tex]\( j \)[/tex] represents the column number.
In the matrix [tex]\( A \)[/tex]:
- [tex]\( a_{11} = 3 \)[/tex]
- [tex]\( a_{12} = 1 \)[/tex]
- [tex]\( a_{21} = -3 \)[/tex]
- [tex]\( a_{22} = -1 \)[/tex]
2. Matrix Representation:
Let's explicitly list the elements of the matrix:
- The first row consists of the elements 3 and 1.
- The second row consists of the elements -3 and -1.
Therefore, the matrix [tex]\( A \)[/tex] is represented as:
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
3. Understanding the Matrix:
- Each element has a specific position in the matrix, which affects various linear transformations when this matrix is applied to a vector.
### Conclusion
We have expressed and verified the matrix [tex]\( A \)[/tex] given by:
[tex]\[ A = \begin{pmatrix} 3 & 1 \\ -3 & -1 \end{pmatrix} \][/tex]
This concludes our detailed step-by-step exploration of the structure and elements of matrix [tex]\( A \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.