Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

The length of a rectangle is represented by the function [tex]\(L(x)=5x\)[/tex]. The width of that same rectangle is represented by the function [tex]\(W(x)=2x^2-4x+13\)[/tex]. Which of the following shows the area of the rectangle in terms of [tex]\(x\)[/tex]?

A. [tex]\(A(x)=10x^3-4x+13\)[/tex]

B. [tex]\(A(x)=10x^3-20x^2+65x\)[/tex]

C. [tex]\(A(x)=2x^3+4x+49\)[/tex]

D. [tex]\(A(x)=2x^2-9x+13\)[/tex]


Sagot :

To determine the area of a rectangle when given the length and width as functions of [tex]\( x \)[/tex], we simply multiply these functions together.

Given:
- [tex]\( L(x) = 5x \)[/tex] (Length as a function of [tex]\( x \)[/tex])
- [tex]\( W(x) = 2x^2 - 4x + 13 \)[/tex] (Width as a function of [tex]\( x \)[/tex])

The area [tex]\( A(x) \)[/tex] of the rectangle as a function of [tex]\( x \)[/tex] is given by:
[tex]\[ A(x) = L(x) \times W(x) \][/tex]

Step-by-Step Solution:
1. Substitute the expressions for [tex]\( L(x) \)[/tex] and [tex]\( W(x) \)[/tex] into the area function:
[tex]\[ A(x) = (5x) \times (2x^2 - 4x + 13) \][/tex]

2. Distribute [tex]\( 5x \)[/tex] to each term inside the parentheses:
[tex]\[ A(x) = 5x \times 2x^2 + 5x \times (-4x) + 5x \times 13 \][/tex]

3. Multiply the terms:
[tex]\[ 5x \times 2x^2 = 10x^3 \][/tex]
[tex]\[ 5x \times (-4x) = -20x^2 \][/tex]
[tex]\[ 5x \times 13 = 65x \][/tex]

4. Combine the results:
[tex]\[ A(x) = 10x^3 - 20x^2 + 65x \][/tex]

Thus, the area of the rectangle in terms of [tex]\( x \)[/tex] is:
[tex]\[ 10x^3 - 20x^2 + 65x \][/tex]

So, the correct answer is:
[tex]\[ W(x) = 10x^3 - 20x^2 + 65x \][/tex]