At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's work through the problem step-by-step to determine the inequality that represents the maximum number of biking outfits Luis can purchase while staying within his budget.
1. Calculate the total amount spent on initial items:
Luis buys:
- A new bicycle for \[tex]$209.67, - 2 bicycle reflectors for \$[/tex]6.04 each,
- A pair of bike gloves for \[tex]$25.77. First, calculate the total cost of the reflectors: \[ \text{Total cost of reflectors} = 2 \times 6.04 = 12.08 \] Next, calculate the initial total spent on the bicycle, reflectors and gloves: \[ \text{Initial total spent} = 209.67 + 12.08 + 25.77 = 247.52 \] 2. Calculate the money left after purchasing the initial items: \[ \text{Money left} = 420.00 - 247.52 = 172.48 \] 3. Represent the remaining budget as an inequality: Let \( x \) be the number of biking outfits Luis can purchase. Each outfit costs \$[/tex]37.16.
The total cost of [tex]\( x \)[/tex] biking outfits is:
[tex]\[ 37.16 \times x \][/tex]
Adding this to the initial amount spent (\[tex]$247.52), we form the total expenditure: \[ 247.52 + 37.16x \] Since Luis has a total budget of \$[/tex]420.00, the inequality that represents this situation is:
[tex]\[ 420 \geq 247.52 + 37.16x \][/tex]
Therefore, the correct inequality to determine the maximum number of outfits Luis can purchase while staying within his budget is:
[tex]\[ 420 \geq 37.16 x + 247.52 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{420 \geq 37.16 x + 247.52} \][/tex]
1. Calculate the total amount spent on initial items:
Luis buys:
- A new bicycle for \[tex]$209.67, - 2 bicycle reflectors for \$[/tex]6.04 each,
- A pair of bike gloves for \[tex]$25.77. First, calculate the total cost of the reflectors: \[ \text{Total cost of reflectors} = 2 \times 6.04 = 12.08 \] Next, calculate the initial total spent on the bicycle, reflectors and gloves: \[ \text{Initial total spent} = 209.67 + 12.08 + 25.77 = 247.52 \] 2. Calculate the money left after purchasing the initial items: \[ \text{Money left} = 420.00 - 247.52 = 172.48 \] 3. Represent the remaining budget as an inequality: Let \( x \) be the number of biking outfits Luis can purchase. Each outfit costs \$[/tex]37.16.
The total cost of [tex]\( x \)[/tex] biking outfits is:
[tex]\[ 37.16 \times x \][/tex]
Adding this to the initial amount spent (\[tex]$247.52), we form the total expenditure: \[ 247.52 + 37.16x \] Since Luis has a total budget of \$[/tex]420.00, the inequality that represents this situation is:
[tex]\[ 420 \geq 247.52 + 37.16x \][/tex]
Therefore, the correct inequality to determine the maximum number of outfits Luis can purchase while staying within his budget is:
[tex]\[ 420 \geq 37.16 x + 247.52 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{420 \geq 37.16 x + 247.52} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.