Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's work through the problem step-by-step to determine the inequality that represents the maximum number of biking outfits Luis can purchase while staying within his budget.
1. Calculate the total amount spent on initial items:
Luis buys:
- A new bicycle for \[tex]$209.67, - 2 bicycle reflectors for \$[/tex]6.04 each,
- A pair of bike gloves for \[tex]$25.77. First, calculate the total cost of the reflectors: \[ \text{Total cost of reflectors} = 2 \times 6.04 = 12.08 \] Next, calculate the initial total spent on the bicycle, reflectors and gloves: \[ \text{Initial total spent} = 209.67 + 12.08 + 25.77 = 247.52 \] 2. Calculate the money left after purchasing the initial items: \[ \text{Money left} = 420.00 - 247.52 = 172.48 \] 3. Represent the remaining budget as an inequality: Let \( x \) be the number of biking outfits Luis can purchase. Each outfit costs \$[/tex]37.16.
The total cost of [tex]\( x \)[/tex] biking outfits is:
[tex]\[ 37.16 \times x \][/tex]
Adding this to the initial amount spent (\[tex]$247.52), we form the total expenditure: \[ 247.52 + 37.16x \] Since Luis has a total budget of \$[/tex]420.00, the inequality that represents this situation is:
[tex]\[ 420 \geq 247.52 + 37.16x \][/tex]
Therefore, the correct inequality to determine the maximum number of outfits Luis can purchase while staying within his budget is:
[tex]\[ 420 \geq 37.16 x + 247.52 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{420 \geq 37.16 x + 247.52} \][/tex]
1. Calculate the total amount spent on initial items:
Luis buys:
- A new bicycle for \[tex]$209.67, - 2 bicycle reflectors for \$[/tex]6.04 each,
- A pair of bike gloves for \[tex]$25.77. First, calculate the total cost of the reflectors: \[ \text{Total cost of reflectors} = 2 \times 6.04 = 12.08 \] Next, calculate the initial total spent on the bicycle, reflectors and gloves: \[ \text{Initial total spent} = 209.67 + 12.08 + 25.77 = 247.52 \] 2. Calculate the money left after purchasing the initial items: \[ \text{Money left} = 420.00 - 247.52 = 172.48 \] 3. Represent the remaining budget as an inequality: Let \( x \) be the number of biking outfits Luis can purchase. Each outfit costs \$[/tex]37.16.
The total cost of [tex]\( x \)[/tex] biking outfits is:
[tex]\[ 37.16 \times x \][/tex]
Adding this to the initial amount spent (\[tex]$247.52), we form the total expenditure: \[ 247.52 + 37.16x \] Since Luis has a total budget of \$[/tex]420.00, the inequality that represents this situation is:
[tex]\[ 420 \geq 247.52 + 37.16x \][/tex]
Therefore, the correct inequality to determine the maximum number of outfits Luis can purchase while staying within his budget is:
[tex]\[ 420 \geq 37.16 x + 247.52 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{420 \geq 37.16 x + 247.52} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.