Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To divide the polynomial [tex]\(12x^3 - 6x^2 - 3x\)[/tex] by [tex]\(-3x\)[/tex], follow these steps carefully:
1. Set up the division: We start with the polynomial [tex]\(12x^3 - 6x^2 - 3x\)[/tex] and we are dividing it by [tex]\(-3x\)[/tex].
2. Divide the first term:
[tex]\[ \frac{12x^3}{-3x} = -4x^2 \][/tex]
Write [tex]\(-4x^2\)[/tex] as the first term of the quotient.
3. Multiply and subtract:
Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ -4x^2 \cdot (-3x) = 12x^3 \][/tex]
Subtract [tex]\(12x^3\)[/tex] from [tex]\(12x^3 - 6x^2 - 3x\)[/tex]:
[tex]\[ (12x^3 - 6x^2 - 3x) - 12x^3 = -6x^2 - 3x \][/tex]
4. Divide the next term:
[tex]\[ \frac{-6x^2}{-3x} = 2x \][/tex]
Write [tex]\(2x\)[/tex] as the next term of the quotient.
5. Multiply and subtract:
Multiply [tex]\(2x\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ 2x \cdot (-3x) = -6x^2 \][/tex]
Subtract [tex]\(-6x^2\)[/tex] from [tex]\(-6x^2 - 3x\)[/tex]:
[tex]\[ (-6x^2 - 3x) - (-6x^2) = -3x \][/tex]
6. Divide the next term:
[tex]\[ \frac{-3x}{-3x} = 1 \][/tex]
Write [tex]\(1\)[/tex] as the next term of the quotient.
7. Multiply and subtract:
Multiply [tex]\(1\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ 1 \cdot (-3x) = -3x \][/tex]
Subtract [tex]\(-3x\)[/tex] from [tex]\(-3x\)[/tex]:
[tex]\[ -3x - (-3x) = 0 \][/tex]
Since we have no remainder left after the final subtraction, the quotient of the division is:
[tex]\[ -4x^2 + 2x + 1 \][/tex]
So, the quotient is [tex]\(-4x^2 + 2x + 1\)[/tex] and the remainder is [tex]\(0\)[/tex].
1. Set up the division: We start with the polynomial [tex]\(12x^3 - 6x^2 - 3x\)[/tex] and we are dividing it by [tex]\(-3x\)[/tex].
2. Divide the first term:
[tex]\[ \frac{12x^3}{-3x} = -4x^2 \][/tex]
Write [tex]\(-4x^2\)[/tex] as the first term of the quotient.
3. Multiply and subtract:
Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ -4x^2 \cdot (-3x) = 12x^3 \][/tex]
Subtract [tex]\(12x^3\)[/tex] from [tex]\(12x^3 - 6x^2 - 3x\)[/tex]:
[tex]\[ (12x^3 - 6x^2 - 3x) - 12x^3 = -6x^2 - 3x \][/tex]
4. Divide the next term:
[tex]\[ \frac{-6x^2}{-3x} = 2x \][/tex]
Write [tex]\(2x\)[/tex] as the next term of the quotient.
5. Multiply and subtract:
Multiply [tex]\(2x\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ 2x \cdot (-3x) = -6x^2 \][/tex]
Subtract [tex]\(-6x^2\)[/tex] from [tex]\(-6x^2 - 3x\)[/tex]:
[tex]\[ (-6x^2 - 3x) - (-6x^2) = -3x \][/tex]
6. Divide the next term:
[tex]\[ \frac{-3x}{-3x} = 1 \][/tex]
Write [tex]\(1\)[/tex] as the next term of the quotient.
7. Multiply and subtract:
Multiply [tex]\(1\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ 1 \cdot (-3x) = -3x \][/tex]
Subtract [tex]\(-3x\)[/tex] from [tex]\(-3x\)[/tex]:
[tex]\[ -3x - (-3x) = 0 \][/tex]
Since we have no remainder left after the final subtraction, the quotient of the division is:
[tex]\[ -4x^2 + 2x + 1 \][/tex]
So, the quotient is [tex]\(-4x^2 + 2x + 1\)[/tex] and the remainder is [tex]\(0\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.