Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's solve the inequality [tex]\(|y - 5| < 2\)[/tex] step-by-step and graph the solution on the number line.
1. Understanding the Absolute Value Inequality:
The inequality [tex]\(|y - 5| < 2\)[/tex] means that the expression inside the absolute value (i.e., [tex]\(y - 5\)[/tex]) is within 2 units of 0 on the number line. This can be translated into two separate inequalities:
[tex]\[ -2 < y - 5 < 2 \][/tex]
2. Solving the Inequalities:
We now need to isolate [tex]\(y\)[/tex] in each part of the inequality.
- For the left part:
[tex]\[ -2 < y - 5 \][/tex]
Add 5 to both sides:
[tex]\[ -2 + 5 < y \implies 3 < y \][/tex]
- For the right part:
[tex]\[ y - 5 < 2 \][/tex]
Add 5 to both sides:
[tex]\[ y < 2 + 5 \implies y < 7 \][/tex]
3. Combining the Results:
Combining the inequalities, we get:
[tex]\[ 3 < y < 7 \][/tex]
4. Graphing the Solution:
To graph this solution on the number line, we plot an open interval between 3 and 7, indicating that [tex]\(y\)[/tex] can take any value between 3 and 7, but not including 3 and 7 themselves.
- Place an open circle at [tex]\(y = 3\)[/tex].
- Place an open circle at [tex]\(y = 7\)[/tex].
- Shade the region between 3 and 7.
Here is the graphical representation:
[tex]\[ \text{---} \circ \text{-------------------} \circ \text{---} 3 7 \][/tex]
This graphical representation indicates that [tex]\(y\)[/tex] can take any value between 3 and 7, not including the endpoints.
1. Understanding the Absolute Value Inequality:
The inequality [tex]\(|y - 5| < 2\)[/tex] means that the expression inside the absolute value (i.e., [tex]\(y - 5\)[/tex]) is within 2 units of 0 on the number line. This can be translated into two separate inequalities:
[tex]\[ -2 < y - 5 < 2 \][/tex]
2. Solving the Inequalities:
We now need to isolate [tex]\(y\)[/tex] in each part of the inequality.
- For the left part:
[tex]\[ -2 < y - 5 \][/tex]
Add 5 to both sides:
[tex]\[ -2 + 5 < y \implies 3 < y \][/tex]
- For the right part:
[tex]\[ y - 5 < 2 \][/tex]
Add 5 to both sides:
[tex]\[ y < 2 + 5 \implies y < 7 \][/tex]
3. Combining the Results:
Combining the inequalities, we get:
[tex]\[ 3 < y < 7 \][/tex]
4. Graphing the Solution:
To graph this solution on the number line, we plot an open interval between 3 and 7, indicating that [tex]\(y\)[/tex] can take any value between 3 and 7, but not including 3 and 7 themselves.
- Place an open circle at [tex]\(y = 3\)[/tex].
- Place an open circle at [tex]\(y = 7\)[/tex].
- Shade the region between 3 and 7.
Here is the graphical representation:
[tex]\[ \text{---} \circ \text{-------------------} \circ \text{---} 3 7 \][/tex]
This graphical representation indicates that [tex]\(y\)[/tex] can take any value between 3 and 7, not including the endpoints.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.