At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which statements correctly describe the graph of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex], let's analyze its properties:
1. Domain:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. Since our function involves a cube root shifted by 1 inside, it remains defined for all [tex]\( x \)[/tex].
- Therefore, the domain of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is all real numbers.
2. Range:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] can take any real number value, as it is defined for all real numbers.
- Adding 2 shifts the entire range up by 2 units, but the overall set of possible [tex]\( y \)[/tex]-values remains all real numbers.
- Thus, the range of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is also all real numbers.
3. Behavior as [tex]\( x \)[/tex] increases:
- The function [tex]\( \sqrt[3]{x - 1} \)[/tex] is an increasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( \sqrt[3]{x - 1} \)[/tex] also increases.
- Adding 2 to [tex]\( \sqrt[3]{x - 1} \)[/tex] just shifts the graph vertically but does not affect its increasing nature.
- Thus, as [tex]\( x \)[/tex] increases, [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] also increases.
4. [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the equation [tex]\( y = \sqrt[3]{0 - 1} + 2 \)[/tex]:
[tex]\[ y = \sqrt[3]{-1} + 2 = -1 + 2 = 1 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 1) \)[/tex].
5. [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( y = 0 \)[/tex].
- Setting [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex]:
[tex]\[ 0 = \sqrt[3]{x - 1} + 2 \implies \sqrt[3]{x - 1} = -2 \][/tex]
[tex]\[ x - 1 = -8 \implies x = -7 \][/tex]
- Therefore, the [tex]\( x \)[/tex]-intercept is at [tex]\( (-7, 0) \)[/tex].
Given these analyses, the three correct statements are:
- The graph has a domain of all real numbers.
- The graph has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex].
- The graph has an [tex]\( x \)[/tex]-intercept at [tex]\( (-7, 0) \)[/tex].
1. Domain:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is defined for all real numbers. Since our function involves a cube root shifted by 1 inside, it remains defined for all [tex]\( x \)[/tex].
- Therefore, the domain of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is all real numbers.
2. Range:
- The cube root function [tex]\( \sqrt[3]{x} \)[/tex] can take any real number value, as it is defined for all real numbers.
- Adding 2 shifts the entire range up by 2 units, but the overall set of possible [tex]\( y \)[/tex]-values remains all real numbers.
- Thus, the range of [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] is also all real numbers.
3. Behavior as [tex]\( x \)[/tex] increases:
- The function [tex]\( \sqrt[3]{x - 1} \)[/tex] is an increasing function, meaning as [tex]\( x \)[/tex] increases, [tex]\( \sqrt[3]{x - 1} \)[/tex] also increases.
- Adding 2 to [tex]\( \sqrt[3]{x - 1} \)[/tex] just shifts the graph vertically but does not affect its increasing nature.
- Thus, as [tex]\( x \)[/tex] increases, [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex] also increases.
4. [tex]\( y \)[/tex]-intercept:
- The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex].
- Substituting [tex]\( x = 0 \)[/tex] into the equation [tex]\( y = \sqrt[3]{0 - 1} + 2 \)[/tex]:
[tex]\[ y = \sqrt[3]{-1} + 2 = -1 + 2 = 1 \][/tex]
- Therefore, the [tex]\( y \)[/tex]-intercept is at [tex]\( (0, 1) \)[/tex].
5. [tex]\( x \)[/tex]-intercept:
- The [tex]\( x \)[/tex]-intercept occurs where [tex]\( y = 0 \)[/tex].
- Setting [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = \sqrt[3]{x - 1} + 2 \)[/tex]:
[tex]\[ 0 = \sqrt[3]{x - 1} + 2 \implies \sqrt[3]{x - 1} = -2 \][/tex]
[tex]\[ x - 1 = -8 \implies x = -7 \][/tex]
- Therefore, the [tex]\( x \)[/tex]-intercept is at [tex]\( (-7, 0) \)[/tex].
Given these analyses, the three correct statements are:
- The graph has a domain of all real numbers.
- The graph has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex].
- The graph has an [tex]\( x \)[/tex]-intercept at [tex]\( (-7, 0) \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.