Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Divide the polynomial [tex](x^4 + 11x^3 + 33x^2 + 24x + 32)[/tex] by [tex](x + 6)[/tex].

Sagot :

Certainly! To solve the division of the polynomial [tex]\(x^4 + 11x^3 + 33x^2 + 24x + 32\)[/tex] by [tex]\(x + 6\)[/tex], we will use polynomial long division. Here are the steps in detail:

1. Set Up the Division:
[tex]\[ \frac{x^4 + 11x^3 + 33x^2 + 24x + 32}{x + 6} \][/tex]

2. Divide the Leading Terms:
Divide the leading term of the dividend (which is [tex]\(x^4\)[/tex]) by the leading term of the divisor (which is [tex]\(x\)[/tex]):
[tex]\[ x^4 \div x = x^3 \][/tex]
This gives us the first term of the quotient: [tex]\(x^3\)[/tex].

3. Multiply and Subtract:
Multiply [tex]\(x^3\)[/tex] by [tex]\(x + 6\)[/tex], and subtract the result from the dividend:
[tex]\[ x^3 \cdot (x + 6) = x^4 + 6x^3 \][/tex]
Subtract this product from the original polynomial:
[tex]\[ (x^4 + 11x^3 + 33x^2 + 24x + 32) - (x^4 + 6x^3) = 5x^3 + 33x^2 + 24x + 32 \][/tex]

4. Repeat the Process:
Repeat the division with the new polynomial [tex]\(5x^3 + 33x^2 + 24x + 32\)[/tex].

- Divide the leading term [tex]\(5x^3\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ 5x^3 \div x = 5x^2 \][/tex]
This gives the next term of the quotient: [tex]\(5x^2\)[/tex].

- Multiply and subtract:
[tex]\[ 5x^2 \cdot (x + 6) = 5x^3 + 30x^2 \][/tex]
Subtract this result from the new polynomial:
[tex]\[ (5x^3 + 33x^2 + 24x + 32) - (5x^3 + 30x^2) = 3x^2 + 24x + 32 \][/tex]

5. Continue the Procedure:
- Divide the leading term [tex]\(3x^2\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ 3x^2 \div x = 3x \][/tex]
This gives us the next term of the quotient: [tex]\(3x\)[/tex].

- Multiply and subtract:
[tex]\[ 3x \cdot (x + 6) = 3x^2 + 18x \][/tex]
Subtract this result from the current polynomial:
[tex]\[ (3x^2 + 24x + 32) - (3x^2 + 18x) = 6x + 32 \][/tex]

6. Final Steps:
- Divide the leading term [tex]\(6x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ 6x \div x = 6 \][/tex]
This gives the last term of the quotient: [tex]\(6\)[/tex].

- Multiply and subtract:
[tex]\[ 6 \cdot (x + 6) = 6x + 36 \][/tex]
Subtract this from the current polynomial:
[tex]\[ (6x + 32) - (6x + 36) = -4 \][/tex]
The remainder is [tex]\(-4\)[/tex].

So, the quotient is:
[tex]\[ x^3 + 5x^2 + 3x + 6 \][/tex]
and the remainder is:
[tex]\[ -4 \][/tex]

Therefore, the division can be written as:
[tex]\[ \frac{x^4 + 11x^3 + 33x^2 + 24x + 32}{x + 6} = x^3 + 5x^2 + 3x + 6 - \frac{4}{x + 6} \][/tex]