Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve the given problem step-by-step.
### Part 1: Determine the nature of the roots of the quadratic equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex]
To determine the nature of the roots of a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], we can use the discriminant, which is calculated as [tex]\( \Delta = b^2 - 4ac \)[/tex].
For the equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex]:
1. Identify the coefficients:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 3\)[/tex]
2. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 2 \cdot 3 = 16 - 24 = -8 \][/tex]
3. Analyze the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has two equal (repeated) real roots.
- If [tex]\(\Delta < 0\)[/tex], the equation has two complex roots.
Since [tex]\(\Delta = -8\)[/tex] which is less than zero, the quadratic equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex] has complex roots.
### Part 2: Find the values of [tex]\(a\)[/tex] such that the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] has equal roots
For the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] to have equal roots, its discriminant must be zero. Let's find the discriminant for this equation.
1. Identify the coefficients:
- [tex]\(a = 9\)[/tex]
- [tex]\(b = -3a\)[/tex]
- [tex]\(c = 1\)[/tex]
2. Set the discriminant to zero:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the coefficient values, we get:
[tex]\[ \Delta = (-3a)^2 - 4 \cdot 9 \cdot 1 = 9a^2 - 36 \][/tex]
For the equation to have equal roots:
[tex]\[ 9a^2 - 36 = 0 \][/tex]
3. Solve for [tex]\(a\)[/tex]:
[tex]\[ 9a^2 = 36 \][/tex]
[tex]\[ a^2 = 4 \][/tex]
[tex]\[ a = \pm 2 \][/tex]
Therefore, the values of [tex]\(a\)[/tex] for which the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] has equal roots are [tex]\(\boxed{-2 \text{ and } 2}\)[/tex].
### Part 1: Determine the nature of the roots of the quadratic equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex]
To determine the nature of the roots of a quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], we can use the discriminant, which is calculated as [tex]\( \Delta = b^2 - 4ac \)[/tex].
For the equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex]:
1. Identify the coefficients:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = -4\)[/tex]
- [tex]\(c = 3\)[/tex]
2. Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 2 \cdot 3 = 16 - 24 = -8 \][/tex]
3. Analyze the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the equation has two distinct real roots.
- If [tex]\(\Delta = 0\)[/tex], the equation has two equal (repeated) real roots.
- If [tex]\(\Delta < 0\)[/tex], the equation has two complex roots.
Since [tex]\(\Delta = -8\)[/tex] which is less than zero, the quadratic equation [tex]\(2x^2 - 4x + 3 = 0\)[/tex] has complex roots.
### Part 2: Find the values of [tex]\(a\)[/tex] such that the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] has equal roots
For the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] to have equal roots, its discriminant must be zero. Let's find the discriminant for this equation.
1. Identify the coefficients:
- [tex]\(a = 9\)[/tex]
- [tex]\(b = -3a\)[/tex]
- [tex]\(c = 1\)[/tex]
2. Set the discriminant to zero:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the coefficient values, we get:
[tex]\[ \Delta = (-3a)^2 - 4 \cdot 9 \cdot 1 = 9a^2 - 36 \][/tex]
For the equation to have equal roots:
[tex]\[ 9a^2 - 36 = 0 \][/tex]
3. Solve for [tex]\(a\)[/tex]:
[tex]\[ 9a^2 = 36 \][/tex]
[tex]\[ a^2 = 4 \][/tex]
[tex]\[ a = \pm 2 \][/tex]
Therefore, the values of [tex]\(a\)[/tex] for which the quadratic equation [tex]\(9x^2 - 3ax + 1 = 0\)[/tex] has equal roots are [tex]\(\boxed{-2 \text{ and } 2}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.