At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the problem of finding the simplified base of the function [tex]\( f(x) = \frac{1}{4} (\sqrt[3]{108})^x \)[/tex], let's proceed step-by-step.
1. Identify the constant factor and the radicand:
The function has a constant factor of [tex]\(\frac{1}{4}\)[/tex] and a base that involves the cube root of [tex]\(108\)[/tex].
2. Find the cube root of 108:
Recall that the cube root of [tex]\(108\)[/tex] can be represented as:
[tex]\[ \sqrt[3]{108} \][/tex]
3. Combine the constant factor with the cube root of 108:
We combine the constant [tex]\(\frac{1}{4}\)[/tex] with the cube root of 108 to find the base of the function. The expression becomes:
[tex]\[ \frac{1}{4} \sqrt[3]{108} \][/tex]
4. Simplify the expression if possible:
To better understand the simplified form of [tex]\(\frac{1}{4} \sqrt[3]{108}\)[/tex], first note that [tex]\(108\)[/tex] can be factored into:
[tex]\[ 108 = 4 \times 27 = 4 \times 3^3 \][/tex]
5. Extract the cube root:
Using the factorization, we get:
[tex]\[ \sqrt[3]{108} = \sqrt[3]{4 \times 3^3} \][/tex]
Since [tex]\(\sqrt[3]{3^3} = 3\)[/tex], the expression simplifies to:
[tex]\[ \sqrt[3]{108} = 3 \sqrt[3]{4} \][/tex]
6. Substitute back into the expression:
Now substitute [tex]\(\sqrt[3]{108}\)[/tex] with [tex]\(3\sqrt[3]{4}\)[/tex] in the original simplified base expression:
[tex]\[ \frac{1}{4} \sqrt[3]{108} = \frac{1}{4} (3 \sqrt[3]{4}) \][/tex]
7. Simplify further:
We can distribute [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} \times 3 \sqrt[3]{4} = \frac{3}{4} \sqrt[3]{4} \][/tex]
Therefore, the simplified base of the function [tex]\( f(x) = \frac{1}{4} (\sqrt[3]{108})^x \)[/tex] is:
[tex]\[ \boxed{3 \sqrt[3]{4}} \][/tex]
1. Identify the constant factor and the radicand:
The function has a constant factor of [tex]\(\frac{1}{4}\)[/tex] and a base that involves the cube root of [tex]\(108\)[/tex].
2. Find the cube root of 108:
Recall that the cube root of [tex]\(108\)[/tex] can be represented as:
[tex]\[ \sqrt[3]{108} \][/tex]
3. Combine the constant factor with the cube root of 108:
We combine the constant [tex]\(\frac{1}{4}\)[/tex] with the cube root of 108 to find the base of the function. The expression becomes:
[tex]\[ \frac{1}{4} \sqrt[3]{108} \][/tex]
4. Simplify the expression if possible:
To better understand the simplified form of [tex]\(\frac{1}{4} \sqrt[3]{108}\)[/tex], first note that [tex]\(108\)[/tex] can be factored into:
[tex]\[ 108 = 4 \times 27 = 4 \times 3^3 \][/tex]
5. Extract the cube root:
Using the factorization, we get:
[tex]\[ \sqrt[3]{108} = \sqrt[3]{4 \times 3^3} \][/tex]
Since [tex]\(\sqrt[3]{3^3} = 3\)[/tex], the expression simplifies to:
[tex]\[ \sqrt[3]{108} = 3 \sqrt[3]{4} \][/tex]
6. Substitute back into the expression:
Now substitute [tex]\(\sqrt[3]{108}\)[/tex] with [tex]\(3\sqrt[3]{4}\)[/tex] in the original simplified base expression:
[tex]\[ \frac{1}{4} \sqrt[3]{108} = \frac{1}{4} (3 \sqrt[3]{4}) \][/tex]
7. Simplify further:
We can distribute [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{1}{4} \times 3 \sqrt[3]{4} = \frac{3}{4} \sqrt[3]{4} \][/tex]
Therefore, the simplified base of the function [tex]\( f(x) = \frac{1}{4} (\sqrt[3]{108})^x \)[/tex] is:
[tex]\[ \boxed{3 \sqrt[3]{4}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.