Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
For the problem at hand, we need to find the location of point [tex]\( R \)[/tex] on the number line. Point [tex]\( R \)[/tex] partitions the directed line segment from [tex]\( Q \)[/tex] to [tex]\( S \)[/tex] in a [tex]\( 3:2 \)[/tex] ratio.
The section formula for a point dividing a line segment internally in a given ratio is given by:
[tex]\[ R = \frac{m x_2 + n x_1}{m + n} \][/tex]
Given:
- [tex]\( m = 3 \)[/tex]
- [tex]\( n = 2 \)[/tex]
- [tex]\( x_1 = -2 \)[/tex] (coordinate of point [tex]\( Q \)[/tex])
- [tex]\( x_2 = 6 \)[/tex] (coordinate of point [tex]\( S \)[/tex])
Let's substitute these values into the section formula:
[tex]\[ R = \frac{3 \cdot 6 + 2 \cdot (-2)}{3 + 2} \][/tex]
Now, simplify this step-by-step:
1. Compute the products in the numerator:
[tex]\[ 3 \cdot 6 = 18 \][/tex]
[tex]\[ 2 \cdot (-2) = -4 \][/tex]
2. Substitute these results back into the formula:
[tex]\[ R = \frac{18 + (-4)}{5} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 18 + (-4) = 14 \][/tex]
4. Divide by the denominator:
[tex]\[ R = \frac{14}{5} \][/tex]
Thus, the location of point [tex]\( R \)[/tex] on the number line is:
[tex]\[ \frac{14}{5} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{14}{5}} \][/tex]
The section formula for a point dividing a line segment internally in a given ratio is given by:
[tex]\[ R = \frac{m x_2 + n x_1}{m + n} \][/tex]
Given:
- [tex]\( m = 3 \)[/tex]
- [tex]\( n = 2 \)[/tex]
- [tex]\( x_1 = -2 \)[/tex] (coordinate of point [tex]\( Q \)[/tex])
- [tex]\( x_2 = 6 \)[/tex] (coordinate of point [tex]\( S \)[/tex])
Let's substitute these values into the section formula:
[tex]\[ R = \frac{3 \cdot 6 + 2 \cdot (-2)}{3 + 2} \][/tex]
Now, simplify this step-by-step:
1. Compute the products in the numerator:
[tex]\[ 3 \cdot 6 = 18 \][/tex]
[tex]\[ 2 \cdot (-2) = -4 \][/tex]
2. Substitute these results back into the formula:
[tex]\[ R = \frac{18 + (-4)}{5} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 18 + (-4) = 14 \][/tex]
4. Divide by the denominator:
[tex]\[ R = \frac{14}{5} \][/tex]
Thus, the location of point [tex]\( R \)[/tex] on the number line is:
[tex]\[ \frac{14}{5} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{14}{5}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.