Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the equation [tex]\( x = \frac{2}{3} \pi r^3 \)[/tex] for [tex]\( r \)[/tex] step-by-step:
1. First, we start with the given equation:
[tex]\[ x = \frac{2}{3} \pi r^3 \][/tex]
2. To isolate [tex]\( r^3 \)[/tex], we need to get rid of the fraction. Multiply both sides of the equation by [tex]\(\frac{3}{2}\)[/tex]:
[tex]\[ \left( \frac{3}{2} \right) x = \pi r^3 \][/tex]
Simplifying, we have:
[tex]\[ \frac{3x}{2} = \pi r^3 \][/tex]
3. Next, divide both sides by [tex]\(\pi\)[/tex] to isolate [tex]\( r^3 \)[/tex]:
[tex]\[ \frac{3x}{2 \pi} = r^3 \][/tex]
4. Take the cube root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt[3]{\frac{3x}{2 \pi}} \][/tex]
After working through these steps, we find that the solution for [tex]\( r \)[/tex] is:
[tex]\[ r = \sqrt[3]{\frac{3x}{2 \pi}} \][/tex]
Checking the given options:
- A. [tex]\( r = \sqrt[3]{3 x - 2 \pi} \)[/tex]
- B. [tex]\( r = \sqrt[3]{\frac{9 \pi}{2 \pi}} \)[/tex]
- C. [tex]\( r = \sqrt[3]{3 x (2 \pi)} \)[/tex]
- D. [tex]\( r = \sqrt[3]{\frac{9 \pi}{3 x}} \)[/tex]
We see that none of these options match our derived solution [tex]\( r = \sqrt[3]{\frac{3x}{2 \pi}} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \text{None of the given options is correct} \][/tex]
1. First, we start with the given equation:
[tex]\[ x = \frac{2}{3} \pi r^3 \][/tex]
2. To isolate [tex]\( r^3 \)[/tex], we need to get rid of the fraction. Multiply both sides of the equation by [tex]\(\frac{3}{2}\)[/tex]:
[tex]\[ \left( \frac{3}{2} \right) x = \pi r^3 \][/tex]
Simplifying, we have:
[tex]\[ \frac{3x}{2} = \pi r^3 \][/tex]
3. Next, divide both sides by [tex]\(\pi\)[/tex] to isolate [tex]\( r^3 \)[/tex]:
[tex]\[ \frac{3x}{2 \pi} = r^3 \][/tex]
4. Take the cube root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt[3]{\frac{3x}{2 \pi}} \][/tex]
After working through these steps, we find that the solution for [tex]\( r \)[/tex] is:
[tex]\[ r = \sqrt[3]{\frac{3x}{2 \pi}} \][/tex]
Checking the given options:
- A. [tex]\( r = \sqrt[3]{3 x - 2 \pi} \)[/tex]
- B. [tex]\( r = \sqrt[3]{\frac{9 \pi}{2 \pi}} \)[/tex]
- C. [tex]\( r = \sqrt[3]{3 x (2 \pi)} \)[/tex]
- D. [tex]\( r = \sqrt[3]{\frac{9 \pi}{3 x}} \)[/tex]
We see that none of these options match our derived solution [tex]\( r = \sqrt[3]{\frac{3x}{2 \pi}} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \text{None of the given options is correct} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.