Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the probability that the child will not have color-deficient vision with the given parent genotypes [tex]\( X^R X \times X^R Y \)[/tex], we need to perform a Punnett square analysis for these genotypes.
1. Identify the parent genotypes:
- Parent 1 (female): [tex]\( X^R X \)[/tex]
- Parent 2 (male): [tex]\( X^R Y \)[/tex]
2. Set up the Punnett square:
[tex]\[ \begin{array}{c|c|c} & X^R & Y \\ \hline X^R & X^R X^R & X^R Y \\ X & X X^R & X Y \\ \end{array} \][/tex]
In this Punnett square, we combine the possible gametes from each parent.
3. List the possible offspring genotypes:
- [tex]\( X^R X^R \)[/tex]
- [tex]\( X^R Y \)[/tex]
- [tex]\( X X^R \)[/tex]
- [tex]\( X Y \)[/tex]
4. Determine the probability of offspring not having color-deficient vision:
- [tex]\( X^R X^R \)[/tex]: Female child, not color-deficient because it has at least one [tex]\( X^R \)[/tex] allele.
- [tex]\( X^R Y \)[/tex]: Male child, not color-deficient because it has the [tex]\( X^R \)[/tex] allele.
- [tex]\( X X^R \)[/tex]: Female child, not color-deficient because it has the [tex]\( X^R \)[/tex] allele.
- [tex]\( X Y \)[/tex]: Male child, color-deficient because it does not have the [tex]\( X^R \)[/tex] allele.
5. Count the number of offspring that are not color-deficient:
- [tex]\( X^R X^R \)[/tex]
- [tex]\( X^R Y \)[/tex]
- [tex]\( X X^R \)[/tex]
Therefore, 3 out of the 4 possible genotypes do not have color-deficient vision.
6. Calculate the probability:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
Thus, the probability that the child will not have color-deficient vision is [tex]\(0.75\)[/tex], making the correct answer:
A. 0.75
1. Identify the parent genotypes:
- Parent 1 (female): [tex]\( X^R X \)[/tex]
- Parent 2 (male): [tex]\( X^R Y \)[/tex]
2. Set up the Punnett square:
[tex]\[ \begin{array}{c|c|c} & X^R & Y \\ \hline X^R & X^R X^R & X^R Y \\ X & X X^R & X Y \\ \end{array} \][/tex]
In this Punnett square, we combine the possible gametes from each parent.
3. List the possible offspring genotypes:
- [tex]\( X^R X^R \)[/tex]
- [tex]\( X^R Y \)[/tex]
- [tex]\( X X^R \)[/tex]
- [tex]\( X Y \)[/tex]
4. Determine the probability of offspring not having color-deficient vision:
- [tex]\( X^R X^R \)[/tex]: Female child, not color-deficient because it has at least one [tex]\( X^R \)[/tex] allele.
- [tex]\( X^R Y \)[/tex]: Male child, not color-deficient because it has the [tex]\( X^R \)[/tex] allele.
- [tex]\( X X^R \)[/tex]: Female child, not color-deficient because it has the [tex]\( X^R \)[/tex] allele.
- [tex]\( X Y \)[/tex]: Male child, color-deficient because it does not have the [tex]\( X^R \)[/tex] allele.
5. Count the number of offspring that are not color-deficient:
- [tex]\( X^R X^R \)[/tex]
- [tex]\( X^R Y \)[/tex]
- [tex]\( X X^R \)[/tex]
Therefore, 3 out of the 4 possible genotypes do not have color-deficient vision.
6. Calculate the probability:
[tex]\[ \frac{3}{4} = 0.75 \][/tex]
Thus, the probability that the child will not have color-deficient vision is [tex]\(0.75\)[/tex], making the correct answer:
A. 0.75
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.