Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem, we will use logical reasoning based on the transitive property of implication.
The transitive property of implication states that if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] are both true, then [tex]\( x \Rightarrow z \)[/tex] must also be true.
Let's analyze the given statements one by one:
A. [tex]\(\neg x \Rightarrow \neg z\)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must also be false.
- This does not necessarily follow from the given premises [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
B. [tex]\( x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is true, then [tex]\( z \)[/tex] must also be true.
- This is directly supported by the transitive property of implications since [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], hence [tex]\( x \Rightarrow z \)[/tex] must be true.
C. [tex]\( \neg x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must be true.
- There is no implication rule that directly supports this statement from [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
D. [tex]\( z \Rightarrow x \)[/tex]:
- The statement suggests that if [tex]\( z \)[/tex] is true, then [tex]\( x \)[/tex] must also be true.
- There is no implication rule that supports this reversal of the initial implications.
By considering the transitive property of implication, the only statement that must be true given [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] is:
B. [tex]\( x \Rightarrow z \)[/tex].
The transitive property of implication states that if [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] are both true, then [tex]\( x \Rightarrow z \)[/tex] must also be true.
Let's analyze the given statements one by one:
A. [tex]\(\neg x \Rightarrow \neg z\)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must also be false.
- This does not necessarily follow from the given premises [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
B. [tex]\( x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is true, then [tex]\( z \)[/tex] must also be true.
- This is directly supported by the transitive property of implications since [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex], hence [tex]\( x \Rightarrow z \)[/tex] must be true.
C. [tex]\( \neg x \Rightarrow z \)[/tex]:
- The statement suggests that if [tex]\( x \)[/tex] is false, then [tex]\( z \)[/tex] must be true.
- There is no implication rule that directly supports this statement from [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex].
D. [tex]\( z \Rightarrow x \)[/tex]:
- The statement suggests that if [tex]\( z \)[/tex] is true, then [tex]\( x \)[/tex] must also be true.
- There is no implication rule that supports this reversal of the initial implications.
By considering the transitive property of implication, the only statement that must be true given [tex]\( x \Rightarrow y \)[/tex] and [tex]\( y \Rightarrow z \)[/tex] is:
B. [tex]\( x \Rightarrow z \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.