Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Two protons (each with [tex]q = 1.60 \times 10^{-19}[/tex] C) in a nucleus are located [tex]1.00 \times 10^{-15}[/tex] m apart. How much electric force do they exert on each other?

[?] N

Sagot :

Certainly! Let's solve this problem step-by-step using Coulomb's law.

Coulomb's law states that the magnitude of the electric force [tex]\( F \)[/tex] between two point charges is given by:

[tex]\[ F = \frac{k \cdot |q_1 \cdot q_2|}{r^2} \][/tex]

Where:
- [tex]\( k \)[/tex] is Coulomb's constant [tex]\((8.988 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2)\)[/tex]
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges (for protons, [tex]\( q_1 = q_2 = 1.60 \times 10^{-19} \, \text{C} \)[/tex])
- [tex]\( r \)[/tex] is the distance between the charges

Let's substitute the given values into the formula to calculate the electric force:

1. Identify the constants and given values:
[tex]\[ k = 8.988 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \][/tex]
[tex]\[ q = 1.60 \times 10^{-19} \, \text{C} \quad (\text{each proton}) \][/tex]
[tex]\[ r = 1.00 \times 10^{-15} \, \text{m} \][/tex]

2. Substitute the values into Coulomb's law equation:
[tex]\[ F = \frac{k \cdot q^2}{r^2} \][/tex]
[tex]\[ F = \frac{8.988 \times 10^9 \cdot (1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]

3. Calculate the numerator:
[tex]\[ (1.60 \times 10^{-19})^2 = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ 8.988 \times 10^9 \cdot 2.56 \times 10^{-38} = 2.299968 \times 10^{-28} \, \text{N} \cdot \text{m}^2 \][/tex]

4. Calculate the denominator:
[tex]\[ (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]

5. Divide the numerator by the denominator:
[tex]\[ \frac{2.299968 \times 10^{-28} \, \text{N} \cdot \text{m}^2}{1.00 \times 10^{-30} \, \text{m}^2} = 229.9968 \, \text{N} \][/tex]

6. Consider significant figures (three significant figures):
[tex]\[ \approx 230.09 \, \text{N} \][/tex]

So, the electric force that the two protons exert on each other is approximately [tex]\( 230.09 \)[/tex] Newtons.

Therefore, the final answer is:
[tex]\[ F \approx 230.09 \, \text{N} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.