Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find [tex]$F_1$[/tex] and [tex]$F_2$[/tex], then calculate the net force on [tex][tex]$q_3$[/tex][/tex].

- [tex]q_3 = -1.21 \times 10^{-6} \, \text{C}[/tex]
- [tex]\vec{F}_1[/tex] is the force exerted onto [tex]$q_3$[/tex] by [tex]$q_1$[/tex].
- Forces directed left are negative [tex](-)[/tex]; forces directed right are positive [tex](+)[/tex].

1. Calculate [tex]\vec{F}_1[/tex]:
[tex]\[
\vec{F}_1 = \square \, \text{N}
\][/tex]

2. Calculate [tex]\vec{F}_2[/tex]:
[tex]\[
\vec{F}_2 = \square \, \text{N}
\][/tex]

3. Determine the net force on [tex]$q_3$[/tex]:
[tex]\[
\vec{F} = \square \, \text{N}
\][/tex]


Sagot :

To solve this problem, we need to find the individual forces exerted on charge [tex]\( q_3 \)[/tex] by charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex], and then compute the net force on [tex]\( q_3 \)[/tex]. Here are the given values:

- Charge [tex]\( q_1 = 2.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_2 = -3.0 \times 10^{-6} \)[/tex] C
- Charge [tex]\( q_3 = 1.21 \times 10^{-6} \)[/tex] C
- Distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{13} = 0.05 \)[/tex] m
- Distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex], [tex]\( r_{23} = 0.03 \)[/tex] m

Coulomb's constant: [tex]\( k = 8.99 \times 10^9 \)[/tex] N m[tex]\(^2\)[/tex] C[tex]\(^{-2}\)[/tex]

### Step-by-Step Solution

1. Calculate the force [tex]\( \vec{F}_1 \)[/tex] exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex]:

The formula for the electrostatic force [tex]\( F \)[/tex] is given by Coulomb’s law:
[tex]\[ F = k \frac{|q_1 q_3|}{r_{13}^2} \][/tex]

Plugging in the values:
[tex]\[ F_1 = 8.99 \times 10^9 \frac{(2.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.05)^2} \][/tex]

By computing this value, we get:
[tex]\[ F_1 = 8.702319999999999 \text{ N} \][/tex]

Since both charges [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] are positive, the force [tex]\( F_1 \)[/tex] is repulsive and directed to the right, so [tex]\( \vec{F}_1 \)[/tex] is positive.

2. Calculate the force [tex]\( \vec{F}_2 \)[/tex] exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex]:

Again, using Coulomb’s law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r_{23}^2} \][/tex]

Plugging in the values:
[tex]\[ F_2 = 8.99 \times 10^9 \frac{(3.0 \times 10^{-6} \times 1.21 \times 10^{-6})}{(0.03)^2} \][/tex]

By computing this value, we get:
[tex]\[ F_2 = 36.25966666666666 \text{ N} \][/tex]

Since [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force [tex]\( F_2 \)[/tex] is attractive and hence also directed to the right, so [tex]\( \vec{F}_2 \)[/tex] is positive.

3. Calculate the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex]:

The net force is the sum of the individual forces [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex]:
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]

Substituting the values:
[tex]\[ F_{\text{net}} = 8.702319999999999 \text{ N} + 36.25966666666666 \text{ N} \][/tex]

By adding these values, we get:
[tex]\[ F_{\text{net}} = 44.96198666666666 \text{ N} \][/tex]

Therefore, the net force [tex]\( \vec{F} \)[/tex] on [tex]\( q_3 \)[/tex] is [tex]\( 44.96198666666666 \)[/tex] N directed to the right.

In summary:
[tex]\[ \vec{F}_1 = 8.702319999999999 \text{ N} \quad \text{(to the right)} \][/tex]

[tex]\[ \vec{F}_2 = 36.25966666666666 \text{ N} \quad \text{(to the right)} \][/tex]

[tex]\[ \vec{F}_{\text{net}} = 44.96198666666666 \text{ N} \quad \text{(to the right)} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.