Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve this problem step-by-step.
1. Understanding the question – We are given the function [tex]\( f(x) = x^2 \)[/tex] and a constant [tex]\( k = -1 \)[/tex]. We need to determine which function represents a parabola that opens downward.
2. Analyzing the given function [tex]\( f(x) = x^2 \)[/tex] – This is a standard quadratic function, and its graph is a parabola that opens upwards. This is because the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( 1 \)[/tex] here) is positive.
3. Applying the constant [tex]\( k \)[/tex] to the function – We need to multiply [tex]\( f(x) \)[/tex] by [tex]\( k \)[/tex]:
[tex]\[ g(x) = k \cdot f(x) = -1 \cdot x^2 = -x^2 \][/tex]
4. Determining the orientation of the resulting parabola – The function [tex]\( g(x) = -x^2 \)[/tex] represents a parabola. To determine whether the parabola opens upwards or downwards, we inspect the coefficient of [tex]\( x^2 \)[/tex]:
- If the coefficient of [tex]\( x^2 \)[/tex] is negative, the parabola opens downward.
- If the coefficient of [tex]\( x^2 \)[/tex] is positive, the parabola opens upward.
Since the coefficient of [tex]\( x^2 \)[/tex] in [tex]\( g(x) = -x^2 \)[/tex] is [tex]\(-1\)[/tex], which is negative, the parabola opens downward.
Based on this analysis, the function that represents a parabola opening downward is [tex]\( g(x) = -x^2 \)[/tex]. Therefore, the answer to the multiple-choice question is:
[tex]\[ g(x) = -x^2 \][/tex]
This function correctly represents a parabola that opens downward.
1. Understanding the question – We are given the function [tex]\( f(x) = x^2 \)[/tex] and a constant [tex]\( k = -1 \)[/tex]. We need to determine which function represents a parabola that opens downward.
2. Analyzing the given function [tex]\( f(x) = x^2 \)[/tex] – This is a standard quadratic function, and its graph is a parabola that opens upwards. This is because the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( 1 \)[/tex] here) is positive.
3. Applying the constant [tex]\( k \)[/tex] to the function – We need to multiply [tex]\( f(x) \)[/tex] by [tex]\( k \)[/tex]:
[tex]\[ g(x) = k \cdot f(x) = -1 \cdot x^2 = -x^2 \][/tex]
4. Determining the orientation of the resulting parabola – The function [tex]\( g(x) = -x^2 \)[/tex] represents a parabola. To determine whether the parabola opens upwards or downwards, we inspect the coefficient of [tex]\( x^2 \)[/tex]:
- If the coefficient of [tex]\( x^2 \)[/tex] is negative, the parabola opens downward.
- If the coefficient of [tex]\( x^2 \)[/tex] is positive, the parabola opens upward.
Since the coefficient of [tex]\( x^2 \)[/tex] in [tex]\( g(x) = -x^2 \)[/tex] is [tex]\(-1\)[/tex], which is negative, the parabola opens downward.
Based on this analysis, the function that represents a parabola opening downward is [tex]\( g(x) = -x^2 \)[/tex]. Therefore, the answer to the multiple-choice question is:
[tex]\[ g(x) = -x^2 \][/tex]
This function correctly represents a parabola that opens downward.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.