Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the function [tex]\( f(x) = 4x - 7 \)[/tex] is one-to-one, we need to examine its properties:
1. Is [tex]\( f(x) \)[/tex] one-to-one?
A function is one-to-one if it never takes the same value twice; that is, [tex]\( f(a) = f(b) \)[/tex] implies [tex]\( a = b \)[/tex]. Another way to determine if a function is one-to-one is to check its derivative. If the derivative is always positive or always negative, the function is strictly monotonic and hence one-to-one.
The derivative of [tex]\( f(x) = 4x - 7 \)[/tex] is [tex]\( f'(x) = 4 \)[/tex]. Since this derivative is a positive constant, [tex]\( f(x) \)[/tex] is always increasing. Therefore, [tex]\( f(x) \)[/tex] is one-to-one.
2. (a) Write an equation for the inverse function in the form [tex]\( y = f^{-1}(x) \)[/tex]:
To find the inverse function, we need to solve the equation [tex]\( y = 4x - 7 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} y + 7 &= 4x \\ x &= \frac{y + 7}{4} \end{align*} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x + 7}{4} \][/tex]
3. (b) Graphing [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
While graphing here isn't practical, you can visualize that both [tex]\( f(x) = 4x - 7 \)[/tex] and [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex] are lines. Specifically:
- [tex]\( f(x) \)[/tex] is a line with a slope of 4 and a y-intercept at -7.
- [tex]\( f^{-1}(x) \)[/tex] is a line with a slope of [tex]\( \frac{1}{4} \)[/tex] and a y-intercept at [tex]\( \frac{7}{4} \)[/tex].
On the coordinate plane, these lines are mirror images of each other over the line [tex]\( y = x \)[/tex].
4. (c) Domain and Range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
- For the function [tex]\( f(x) = 4x - 7 \)[/tex]:
- Domain: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- Range: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- For the inverse function [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex]:
- Domain: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- Range: All real numbers ([tex]\(\mathbb{R}\)[/tex])
Since both functions are linear and their slopes are non-zero, their domains and ranges cover all real numbers.
Summary:
- The function [tex]\( f(x) = 4x - 7 \)[/tex] is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex].
- The domain and range of both [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] are all real numbers ([tex]\(\mathbb{R}\)[/tex]).
1. Is [tex]\( f(x) \)[/tex] one-to-one?
A function is one-to-one if it never takes the same value twice; that is, [tex]\( f(a) = f(b) \)[/tex] implies [tex]\( a = b \)[/tex]. Another way to determine if a function is one-to-one is to check its derivative. If the derivative is always positive or always negative, the function is strictly monotonic and hence one-to-one.
The derivative of [tex]\( f(x) = 4x - 7 \)[/tex] is [tex]\( f'(x) = 4 \)[/tex]. Since this derivative is a positive constant, [tex]\( f(x) \)[/tex] is always increasing. Therefore, [tex]\( f(x) \)[/tex] is one-to-one.
2. (a) Write an equation for the inverse function in the form [tex]\( y = f^{-1}(x) \)[/tex]:
To find the inverse function, we need to solve the equation [tex]\( y = 4x - 7 \)[/tex] for [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} y + 7 &= 4x \\ x &= \frac{y + 7}{4} \end{align*} \][/tex]
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x + 7}{4} \][/tex]
3. (b) Graphing [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
While graphing here isn't practical, you can visualize that both [tex]\( f(x) = 4x - 7 \)[/tex] and [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex] are lines. Specifically:
- [tex]\( f(x) \)[/tex] is a line with a slope of 4 and a y-intercept at -7.
- [tex]\( f^{-1}(x) \)[/tex] is a line with a slope of [tex]\( \frac{1}{4} \)[/tex] and a y-intercept at [tex]\( \frac{7}{4} \)[/tex].
On the coordinate plane, these lines are mirror images of each other over the line [tex]\( y = x \)[/tex].
4. (c) Domain and Range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
- For the function [tex]\( f(x) = 4x - 7 \)[/tex]:
- Domain: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- Range: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- For the inverse function [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex]:
- Domain: All real numbers ([tex]\(\mathbb{R}\)[/tex])
- Range: All real numbers ([tex]\(\mathbb{R}\)[/tex])
Since both functions are linear and their slopes are non-zero, their domains and ranges cover all real numbers.
Summary:
- The function [tex]\( f(x) = 4x - 7 \)[/tex] is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x + 7}{4} \)[/tex].
- The domain and range of both [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] are all real numbers ([tex]\(\mathbb{R}\)[/tex]).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.