Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Determine the angle of rotation needed to eliminate the [tex]xy[/tex] term from the equation [tex]x^2 - xy + y^2 = 0[/tex].

Sagot :

Certainly! Let's find the angle of rotation needed to eliminate the [tex]\(xy\)[/tex] term from the given equation:

[tex]\[ x^2 - xy + y^2 = 0 \][/tex]

The general form of a second-degree equation involving [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is:

[tex]\[ Ax^2 + 2Hxy + By^2 + \dots = 0 \][/tex]

For our equation, we identify:

[tex]\[ A = 1, \quad 2H = -1, \quad B = 1 \][/tex]

First, we need to find the angle [tex]\(\theta\)[/tex] of rotation that will eliminate the [tex]\(xy\)[/tex] term. The relationship between the coefficients and the angle [tex]\(\theta\)[/tex] for rotation is given by:

[tex]\[ \tan(2\theta) = \frac{2H}{A - B} \][/tex]

Given our values:

[tex]\[ A = 1 \][/tex]
[tex]\[ B = 1 \][/tex]
[tex]\[ 2H = -1 \][/tex]

We substitute these into the equation for [tex]\(\tan(2\theta)\)[/tex]:

[tex]\[ \tan(2\theta) = \frac{2H}{A - B} = \frac{-1}{1 - 1} \][/tex]

Notice that [tex]\(A - B = 0\)[/tex]. Therefore, we have:

[tex]\[ \tan(2\theta) = \frac{-1}{0} \][/tex]

Since division by zero is undefined, this implies that [tex]\(\tan(2\theta)\)[/tex] is undefined. The tangent function is undefined at odd multiples of [tex]\( \frac{\pi}{2} \)[/tex] radians (90 degrees).

Consequently, the angle [tex]\(2\theta\)[/tex] must be:

[tex]\[ 2\theta = \frac{\pi}{2} \][/tex]

Solving for [tex]\(\theta\)[/tex]:

[tex]\[ \theta = \frac{\pi}{4} \quad \text{or} \quad \theta = 45^\circ \][/tex]

Additionally:

[tex]\[ 2\theta = -\frac{\pi}{2} \][/tex]

[tex]\[ \theta = -\frac{\pi}{4} \quad \text{or} \quad \theta = -45^\circ \][/tex]

Thus, the angles of rotation that will eliminate the [tex]\(xy\)[/tex] term from the given equation are:

[tex]\[ \theta = 45^\circ \quad \text{or} \quad \theta = -45^\circ \][/tex]

Therefore, the required angles of rotation are:

[tex]\[ \boxed{45^\circ \text{ or } -45^\circ} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.