Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's consider the pair of functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = e^x \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.