Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's consider the pair of functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = e^x \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We want to determine the points at which the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex]. In other words, we need to find the points where [tex]\( e^x \)[/tex] is greater than [tex]\( x^2 \)[/tex].
First, we need to evaluate both functions over the given interval. By examining the values of [tex]\( x \)[/tex] from [tex]\( 0 \)[/tex] to [tex]\( 5 \)[/tex]:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 = 0 \quad \text{and} \quad g(0) = e^0 = 1 \][/tex]
Here, [tex]\( 1 > 0 \)[/tex].
- At [tex]\( x = 0.05 \)[/tex]:
[tex]\[ f(0.05) \approx 0.00255 \quad \text{and} \quad g(0.05) \approx 1.05 \][/tex]
Here, [tex]\( 1.05 > 0.00255 \)[/tex].
- At [tex]\( x = 0.10 \)[/tex]:
[tex]\[ f(0.10) \approx 0.0102 \quad \text{and} \quad g(0.10) \approx 1.11 \][/tex]
Here, [tex]\( 1.11 > 0.0102 \)[/tex].
Continuing this evaluation for several points within the interval, we observe:
- At [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1 \quad \text{and} \quad g(1) = e \approx 2.72 \][/tex]
Here, [tex]\( 2.72 > 1 \)[/tex].
- At [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 4 \quad \text{and} \quad g(2) \approx 7.39 \][/tex]
Here, [tex]\( 7.39 > 4 \)[/tex].
- At [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = 9 \quad \text{and} \quad g(3) \approx 20.09 \][/tex]
Here, [tex]\( 20.09 > 9 \)[/tex].
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 16 \quad \text{and} \quad g(4) \approx 54.60 \][/tex]
Here, [tex]\( 54.60 > 16 \)[/tex].
- At [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 25 \quad \text{and} \quad g(5) \approx 148.41 \][/tex]
Here, [tex]\( 148.41 > 25 \)[/tex].
By examining these values, we see a consistent pattern:
For all [tex]\( x \)[/tex] in the interval [tex]\( 0 \leq x \leq 5 \)[/tex], the values of [tex]\( g(x) = e^x \)[/tex] are greater than the values of [tex]\( f(x) = x^2 \)[/tex]. Hence, the exponential function [tex]\( g(x) = e^x \)[/tex] is consistently growing at a faster rate than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the entire interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.