Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the area of the plates required to create a specific electric field given the charge and the permittivity of free space, we can follow a step-by-step approach. Let’s proceed:
1. Identify the Given Values:
- Charge, [tex]\( Q \)[/tex] = [tex]\( 7.58 \times 10^{-9} \)[/tex] C (coulombs)
- Electric field, [tex]\( E \)[/tex] = 47500 N/C (newtons per coulomb)
- Permittivity of free space, [tex]\( \epsilon_0 \)[/tex] = [tex]\( 8.85 \times 10^{-12} \)[/tex] F/m (farads per meter)
2. Understand the Relevant Formula:
The electric field [tex]\( E \)[/tex] created by a surface charge density [tex]\( \sigma \)[/tex] on parallel plates can be described by:
[tex]\[ E = \frac{\sigma}{\epsilon_0} \][/tex]
where [tex]\( \sigma \)[/tex] (surface charge density) is given by:
[tex]\[ \sigma = \frac{Q}{A} \][/tex]
Here, [tex]\( Q \)[/tex] is the total charge and [tex]\( A \)[/tex] is the area of the plates.
So, combining these two equations, we get:
[tex]\[ E = \frac{Q / A}{\epsilon_0} = \frac{Q}{A \cdot \epsilon_0} \][/tex]
3. Solve for the Area [tex]\( A \)[/tex]:
Rearrange the equation to solve for [tex]\( A \)[/tex]:
[tex]\[ A = \frac{Q}{E \cdot \epsilon_0} \][/tex]
4. Substitute the Given Values:
[tex]\[ A = \frac{7.58 \times 10^{-9} \, \text{C}}{47500 \, \text{N/C} \times 8.85 \times 10^{-12} \, \text{F/m}} \][/tex]
5. Calculate the Area:
[tex]\[ A \approx 0.01803151947665775 \, \text{m}^2 \][/tex]
Therefore, the required area of the plates to create an electric field of 47500 N/C with a charge of [tex]\( 7.58 \times 10^{-9} \)[/tex] C is approximately [tex]\( 0.0180 \, \text{m}^2 \)[/tex].
1. Identify the Given Values:
- Charge, [tex]\( Q \)[/tex] = [tex]\( 7.58 \times 10^{-9} \)[/tex] C (coulombs)
- Electric field, [tex]\( E \)[/tex] = 47500 N/C (newtons per coulomb)
- Permittivity of free space, [tex]\( \epsilon_0 \)[/tex] = [tex]\( 8.85 \times 10^{-12} \)[/tex] F/m (farads per meter)
2. Understand the Relevant Formula:
The electric field [tex]\( E \)[/tex] created by a surface charge density [tex]\( \sigma \)[/tex] on parallel plates can be described by:
[tex]\[ E = \frac{\sigma}{\epsilon_0} \][/tex]
where [tex]\( \sigma \)[/tex] (surface charge density) is given by:
[tex]\[ \sigma = \frac{Q}{A} \][/tex]
Here, [tex]\( Q \)[/tex] is the total charge and [tex]\( A \)[/tex] is the area of the plates.
So, combining these two equations, we get:
[tex]\[ E = \frac{Q / A}{\epsilon_0} = \frac{Q}{A \cdot \epsilon_0} \][/tex]
3. Solve for the Area [tex]\( A \)[/tex]:
Rearrange the equation to solve for [tex]\( A \)[/tex]:
[tex]\[ A = \frac{Q}{E \cdot \epsilon_0} \][/tex]
4. Substitute the Given Values:
[tex]\[ A = \frac{7.58 \times 10^{-9} \, \text{C}}{47500 \, \text{N/C} \times 8.85 \times 10^{-12} \, \text{F/m}} \][/tex]
5. Calculate the Area:
[tex]\[ A \approx 0.01803151947665775 \, \text{m}^2 \][/tex]
Therefore, the required area of the plates to create an electric field of 47500 N/C with a charge of [tex]\( 7.58 \times 10^{-9} \)[/tex] C is approximately [tex]\( 0.0180 \, \text{m}^2 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.