Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve the given system of equations step-by-step:
The system of equations given is:
1. [tex]\(4x - 2y = -26\)[/tex]
2. [tex]\(-3x + 6y = 33\)[/tex]
Here's the plan to solve this system:
1. Simplify the equations if possible.
2. Use either the substitution method or the elimination method to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
### Step 1: Simplify the equations
First, observe the given equations. Notice the second equation is:
[tex]\[ -3x + 6y = 33 \][/tex]
If we divide this entire equation by 3, it simplifies to:
[tex]\[ -x + 2y = 11 \][/tex]
So, the system now looks like this:
1. [tex]\(4x - 2y = -26\)[/tex]
2. [tex]\(-x + 2y = 11\)[/tex]
### Step 2: Use the Elimination Method
Next, we'll use the elimination method to eliminate one of the variables. Let's add the two equations together to eliminate [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{c} (4x - 2y) + (-x + 2y) = -26 + 11 \\ 4x - 2y - x + 2y = -15 \\ 3x = -15 \end{array} \][/tex]
Now, solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = -15 \implies x = \frac{-15}{3} \implies x = -5 \][/tex]
### Step 3: Substitute [tex]\(x\)[/tex] back into one of the original equations to solve for [tex]\(y\)[/tex]
We can use the simplified second equation for substitution:
[tex]\[ -x + 2y = 11 \][/tex]
Substitute [tex]\(x = -5\)[/tex] into the equation:
[tex]\[ -(-5) + 2y = 11 \implies 5 + 2y = 11 \][/tex]
Now, solve for [tex]\(y\)[/tex]:
[tex]\[ 5 + 2y = 11 \implies 2y = 11 - 5 \implies 2y = 6 \implies y = \frac{6}{2} \implies y = 3 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (-5, 3) \][/tex]
The system of equations given is:
1. [tex]\(4x - 2y = -26\)[/tex]
2. [tex]\(-3x + 6y = 33\)[/tex]
Here's the plan to solve this system:
1. Simplify the equations if possible.
2. Use either the substitution method or the elimination method to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
### Step 1: Simplify the equations
First, observe the given equations. Notice the second equation is:
[tex]\[ -3x + 6y = 33 \][/tex]
If we divide this entire equation by 3, it simplifies to:
[tex]\[ -x + 2y = 11 \][/tex]
So, the system now looks like this:
1. [tex]\(4x - 2y = -26\)[/tex]
2. [tex]\(-x + 2y = 11\)[/tex]
### Step 2: Use the Elimination Method
Next, we'll use the elimination method to eliminate one of the variables. Let's add the two equations together to eliminate [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{c} (4x - 2y) + (-x + 2y) = -26 + 11 \\ 4x - 2y - x + 2y = -15 \\ 3x = -15 \end{array} \][/tex]
Now, solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = -15 \implies x = \frac{-15}{3} \implies x = -5 \][/tex]
### Step 3: Substitute [tex]\(x\)[/tex] back into one of the original equations to solve for [tex]\(y\)[/tex]
We can use the simplified second equation for substitution:
[tex]\[ -x + 2y = 11 \][/tex]
Substitute [tex]\(x = -5\)[/tex] into the equation:
[tex]\[ -(-5) + 2y = 11 \implies 5 + 2y = 11 \][/tex]
Now, solve for [tex]\(y\)[/tex]:
[tex]\[ 5 + 2y = 11 \implies 2y = 11 - 5 \implies 2y = 6 \implies y = \frac{6}{2} \implies y = 3 \][/tex]
### Conclusion
The solution to the system of equations is:
[tex]\[ (x, y) = (-5, 3) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.