Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex], follow these steps:
1. Find the slope of the given line:
The given line equation is [tex]\( y = 4x + 6 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Therefore, the slope of the given line is [tex]\( m = 4 \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the given slope. Thus, the slope of the line perpendicular to the given line is [tex]\( m_{\text{perpendicular}} = -\frac{1}{m} = -\frac{1}{4} \)[/tex].
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through, and [tex]\( m \)[/tex] is the slope of the line. In this case, the point is [tex]\( (8, -4) \)[/tex] and the slope is [tex]\( -\frac{1}{4} \)[/tex].
4. Substitute the given point and the slope into the point-slope form:
[tex]\[ y - (-4) = -\frac{1}{4}(x - 8) \][/tex]
Simplifying this equation step-by-step:
[tex]\[ y + 4 = -\frac{1}{4}(x - 8) \][/tex]
Distribute the [tex]\( -\frac{1}{4} \)[/tex]:
[tex]\[ y + 4 = -\frac{1}{4}x + 2 \][/tex]
Subtract 4 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4}x + 2 - 4 \][/tex]
Simplify the expression:
[tex]\[ y = -\frac{1}{4}x - 2 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex] is [tex]\( y = -\frac{1}{4}x - 2 \)[/tex].
The correct choice is:
[tex]\[ \boxed{y = -\frac{1}{4}x - 2} \][/tex]
1. Find the slope of the given line:
The given line equation is [tex]\( y = 4x + 6 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Therefore, the slope of the given line is [tex]\( m = 4 \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the given slope. Thus, the slope of the line perpendicular to the given line is [tex]\( m_{\text{perpendicular}} = -\frac{1}{m} = -\frac{1}{4} \)[/tex].
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through, and [tex]\( m \)[/tex] is the slope of the line. In this case, the point is [tex]\( (8, -4) \)[/tex] and the slope is [tex]\( -\frac{1}{4} \)[/tex].
4. Substitute the given point and the slope into the point-slope form:
[tex]\[ y - (-4) = -\frac{1}{4}(x - 8) \][/tex]
Simplifying this equation step-by-step:
[tex]\[ y + 4 = -\frac{1}{4}(x - 8) \][/tex]
Distribute the [tex]\( -\frac{1}{4} \)[/tex]:
[tex]\[ y + 4 = -\frac{1}{4}x + 2 \][/tex]
Subtract 4 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4}x + 2 - 4 \][/tex]
Simplify the expression:
[tex]\[ y = -\frac{1}{4}x - 2 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex] is [tex]\( y = -\frac{1}{4}x - 2 \)[/tex].
The correct choice is:
[tex]\[ \boxed{y = -\frac{1}{4}x - 2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.