Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex], follow these steps:
1. Find the slope of the given line:
The given line equation is [tex]\( y = 4x + 6 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Therefore, the slope of the given line is [tex]\( m = 4 \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the given slope. Thus, the slope of the line perpendicular to the given line is [tex]\( m_{\text{perpendicular}} = -\frac{1}{m} = -\frac{1}{4} \)[/tex].
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through, and [tex]\( m \)[/tex] is the slope of the line. In this case, the point is [tex]\( (8, -4) \)[/tex] and the slope is [tex]\( -\frac{1}{4} \)[/tex].
4. Substitute the given point and the slope into the point-slope form:
[tex]\[ y - (-4) = -\frac{1}{4}(x - 8) \][/tex]
Simplifying this equation step-by-step:
[tex]\[ y + 4 = -\frac{1}{4}(x - 8) \][/tex]
Distribute the [tex]\( -\frac{1}{4} \)[/tex]:
[tex]\[ y + 4 = -\frac{1}{4}x + 2 \][/tex]
Subtract 4 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4}x + 2 - 4 \][/tex]
Simplify the expression:
[tex]\[ y = -\frac{1}{4}x - 2 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex] is [tex]\( y = -\frac{1}{4}x - 2 \)[/tex].
The correct choice is:
[tex]\[ \boxed{y = -\frac{1}{4}x - 2} \][/tex]
1. Find the slope of the given line:
The given line equation is [tex]\( y = 4x + 6 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Therefore, the slope of the given line is [tex]\( m = 4 \)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the given slope. Thus, the slope of the line perpendicular to the given line is [tex]\( m_{\text{perpendicular}} = -\frac{1}{m} = -\frac{1}{4} \)[/tex].
3. Use the point-slope form to write the equation of the perpendicular line:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through, and [tex]\( m \)[/tex] is the slope of the line. In this case, the point is [tex]\( (8, -4) \)[/tex] and the slope is [tex]\( -\frac{1}{4} \)[/tex].
4. Substitute the given point and the slope into the point-slope form:
[tex]\[ y - (-4) = -\frac{1}{4}(x - 8) \][/tex]
Simplifying this equation step-by-step:
[tex]\[ y + 4 = -\frac{1}{4}(x - 8) \][/tex]
Distribute the [tex]\( -\frac{1}{4} \)[/tex]:
[tex]\[ y + 4 = -\frac{1}{4}x + 2 \][/tex]
Subtract 4 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{4}x + 2 - 4 \][/tex]
Simplify the expression:
[tex]\[ y = -\frac{1}{4}x - 2 \][/tex]
Thus, the equation of the line that is perpendicular to [tex]\( y = 4x + 6 \)[/tex] and passes through the point [tex]\( (8, -4) \)[/tex] is [tex]\( y = -\frac{1}{4}x - 2 \)[/tex].
The correct choice is:
[tex]\[ \boxed{y = -\frac{1}{4}x - 2} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.