Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The average daily temperature, [tex]\( t \)[/tex], in degrees Fahrenheit for a city is modeled by the equation
[tex]\[ t = 35 \cos \left( \frac{\pi}{6}(m+3) \right) + 55, \][/tex]
where [tex]\( m = 0 \)[/tex] represents January 1, [tex]\( m = 2 \)[/tex] represents March 1, and so on. Which equation also models this situation?

A. [tex]\( t = -35 \sin \left( \frac{\pi}{6} m \right) + 55 \)[/tex]
B. [tex]\( t = -35 \sin \left( \frac{\pi}{6}(m+3) \right) + 55 \)[/tex]
C. [tex]\( t = 35 \sin \left( \frac{\pi}{6} m \right) + 55 \)[/tex]
D. [tex]\( t = 35 \sin \left( \frac{\pi}{6}(m+3) \right) + 55 \)[/tex]

Sagot :

To determine which equation also models the temperature [tex]\( t \)[/tex] as a function of months [tex]\( m \)[/tex], let's start with the given function:

[tex]\[ t = 35 \cos \left(\frac{\pi}{6}(m+3)\right) + 55 \][/tex]

We need to find an equivalent equation using the sine function. Let's rewrite the cosine function in terms of the sine function using trigonometric identities. We can use the identity:

[tex]\[ \cos(x) = \sin\left( \frac{\pi}{2} - x \right) \][/tex]

First, let's set [tex]\( x = \frac{\pi}{6}(m + 3) \)[/tex]:

[tex]\[ \cos\left(\frac{\pi}{6}(m + 3)\right) \][/tex]

Using the identity, we substitute [tex]\( x \)[/tex]:

[tex]\[ \cos\left(\frac{\pi}{6}(m + 3)\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{6}(m+3)\right) \][/tex]

Now, simplify the argument of the sine function:

[tex]\[ \frac{\pi}{2} - \frac{\pi}{6}(m + 3) = \frac{\pi}{2} - \frac{\pi}{6}m - \frac{\pi}{6} \cdot 3 \][/tex]
[tex]\[ = \frac{\pi}{2} - \frac{\pi}{6}m - \frac{\pi}{2} \][/tex]
[tex]\[ = -\frac{\pi}{6}m \][/tex]

Thus:

[tex]\[ \cos\left(\frac{\pi}{6}(m + 3)\right) = \sin\left(-\frac{\pi}{6}m\right) \][/tex]

Next, we use the odd property of the sine function, which states:

[tex]\[ \sin(-x) = -\sin(x) \][/tex]

So:

[tex]\[ \sin\left(-\frac{\pi}{6}m\right) = -\sin\left(\frac{\pi}{6}m\right) \][/tex]

Substituting this back into the original equation:

[tex]\[ t = 35 \cos\left(\frac{\pi}{6}(m + 3)\right) + 55 \][/tex]
[tex]\[ = 35 \left[\sin\left(-\frac{\pi}{6}m\right)\right] + 55 \][/tex]
[tex]\[ = 35 \left[-\sin\left(\frac{\pi}{6}m\right)\right] + 55 \][/tex]
[tex]\[ = -35 \sin\left(\frac{\pi}{6}m\right) + 55 \][/tex]

Thus, the equivalent equation that also models the average daily temperature [tex]\( t \)[/tex] as a function of months [tex]\( m \)[/tex] is:

[tex]\[ t = -35 \sin\left(\frac{\pi}{6}m\right) + 55 \][/tex]

So, the correct answer is:

[tex]\[ t = -35 \sin\left(\frac{\pi}{6}m\right) + 55 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.