Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Factorize [tex]$9p + 3$[/tex]

Sagot :

Sure, let's factorize the expression [tex]\( 9p + 3 \)[/tex].

Step 1: Identify the greatest common factor (GCF).
- The terms in the expression are [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex].
- The GCF of [tex]\( 9p \)[/tex] and [tex]\( 3 \)[/tex] is [tex]\( 3 \)[/tex], because 3 is the largest number that divides both 9 and 3.

Step 2: Factor out the GCF from each term.
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 9p \)[/tex], we are left with [tex]\( 3p \)[/tex] because [tex]\( 9p \div 3 = 3p \)[/tex].
- When we factor out the GCF [tex]\( 3 \)[/tex] from [tex]\( 3 \)[/tex], we are left with [tex]\( 1 \)[/tex] because [tex]\( 3 \div 3 = 1 \)[/tex].

Step 3: Write the expression as the product of the GCF and the simplified terms within parentheses.
- After factoring out the GCF [tex]\( 3 \)[/tex], the expression [tex]\( 9p + 3 \)[/tex] can be rewritten as [tex]\( 3(3p + 1) \)[/tex].

So, the factorized form of the expression [tex]\( 9p + 3 \)[/tex] is:
[tex]\[ \boxed{3(3p + 1)} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.