Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Question 8 of 25

Solve the formula [tex]$V=n^2 h$[/tex] for [tex]$n$[/tex].

A. [tex]$n=\sqrt{h}$[/tex]

B. [tex][tex]$n=\sqrt{V - h}$[/tex][/tex]

C. [tex]$n=\sqrt{V h}$[/tex]

D. [tex]$n=\sqrt{\frac{V}{h}}$[/tex]


Sagot :

Let's solve for [tex]\( n \)[/tex] in the given formula [tex]\( V = n^2 h \)[/tex].

1. Start with the given formula:
[tex]\[ V = n^2 h \][/tex]

2. To solve for [tex]\( n \)[/tex], we first need to isolate [tex]\( n^2 \)[/tex]. We do this by dividing both sides of the equation by [tex]\( h \)[/tex]:
[tex]\[ \frac{V}{h} = n^2 \][/tex]

3. Now, we need to solve for [tex]\( n \)[/tex]. To do this, take the square root of both sides of the equation:
[tex]\[ n = \sqrt{\frac{V}{h}} \][/tex]

Therefore, solving the formula [tex]\( V = n^2 h \)[/tex] for [tex]\( n \)[/tex] yields:
[tex]\[ n = \sqrt{\frac{V}{h}} \][/tex]

Looking at the given options, we see that option D matches this result:

D. [tex]\( s = \sqrt{\frac{V}{h}} \)[/tex]

Hence, the correct choice is [tex]\( \boxed{D} \)[/tex].