Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Use the quadratic formula to solve for [tex]\( x \)[/tex].

[tex]\[ 2x^2 + 2x = 9 \][/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.

[tex]\[ x = \square \][/tex]


Sagot :

To solve the quadratic equation [tex]\(2x^2 + 2x = 9\)[/tex], we first need to rewrite it in standard form [tex]\(ax^2 + bx + c = 0\)[/tex].

Starting from:
[tex]\[ 2x^2 + 2x = 9 \][/tex]

Subtract 9 from both sides to obtain:
[tex]\[ 2x^2 + 2x - 9 = 0 \][/tex]

Here, the coefficients are [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -9\)[/tex].

We will use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

First, calculate the discriminant, [tex]\(\Delta\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 2^2 - 4(2)(-9) \][/tex]
[tex]\[ \Delta = 4 + 72 \][/tex]
[tex]\[ \Delta = 76 \][/tex]

Since the discriminant is positive, we will have two distinct real roots.

Next, we find the two solutions using the quadratic formula:

For [tex]\( x_1 \)[/tex]:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_1 = \frac{-2 + \sqrt{76}}{2(2)} \][/tex]
[tex]\[ x_1 = \frac{-2 + \sqrt{76}}{4} \][/tex]
[tex]\[ x_1 \approx \frac{-2 + 8.72}{4} \][/tex]
[tex]\[ x_1 \approx \frac{6.72}{4} \][/tex]
[tex]\[ x_1 \approx 1.68 \][/tex]

For [tex]\( x_2 \)[/tex]:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-2 - \sqrt{76}}{2(2)} \][/tex]
[tex]\[ x_2 = \frac{-2 - 8.72}{4} \][/tex]
[tex]\[ x_2 \approx \frac{-10.72}{4} \][/tex]
[tex]\[ x_2 \approx -2.68 \][/tex]

Thus, the solutions to the quadratic equation [tex]\(2x^2 + 2x - 9 = 0\)[/tex] are:

[tex]\[ x \approx 1.68, -2.68 \][/tex]

These results are rounded to the nearest hundredth.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.